Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Zhou Jin x
Clear All Modify Search
Free access

Yuqing Wu, Yinyan Xu, Hong Zhou, Jin Tao and Shengnan Li

Urocortin (UCN), a newly identified, 40-amino-acid, corticotropin-releasing hormone (CRH) structurally related peptide, has been demonstrated to be expressed in the central nervous system and many peripheral tissues of rats and man. This study aimed to investigate the expression profile of UCN in rat lung and the effect of UCN on lung vascular permeability. The expression of UCN mRNA was detected by reverse transcriptase PCR (RT–PCR). UCN peptide was measured by immunohistochemistry and Western blot analysis. We found that both UCN mRNA and peptide were obviously expressed in rat lung. Immunohistochemistry results showed that UCN peptide is mainly expressed in bronchial epithelium mucosa and alveolar epithelium. We also found that rats receiving inhalation aerosol of UCN had a significant elevation of lung vascular permeability compared with rats receiving vehicle and ovalbumin (OVA) by the Evans blue (EB) technique. UCN aerosol inhalation resulted in obvious pulmonary congestion and edema observed under light microscope by hematoxylin and eosin (HE) staining. The nonselective peptide CRH receptor antagonist astressin markedly reduced lung vascular permeability triggered by UCN. Enhanced pulmonary vascular permeability induced by UCN was markedly inhibited by pretreatment with the mast-cell stabilizer cromolyn and histamine-1 (H1) receptor antagonist azelastine respectively, but not by the leukotriene receptor antagonist montelukast. In summary, in the present study, we demonstrated for the first time that UCN is expressed in rat lung and contributes to an increase in lung vascular permeability through activation of CRH receptors. Mast cells and histamine may be involved in this effect of UCN. Peripherally produced UCN in lung may act as an autocrine and paracrine proinflammatory factor.

Free access

Meijia Zhang, Haiyan Hong, Bo Zhou, Shiying Jin, Chao Wang, Maoyong Fu, Songbo Wang and Guoliang Xia

Locally synthesized atrial natriuretic peptide (ANP) and its receptors have been found in reproductive tissues of various mammals, and play an important role in the acrosome reaction of human sperm. The objective of the present study was to examine the expression of ANP and its receptors in pig spermatozoa and oviduct, and the effect of ANP on pig spermatozoa function. The expression of ANP and its receptors was analyzed by RT-PCR. Only natriuretic peptide receptors-A (NPRA) mRNA was detected in fresh sperm. While the levels of natriuretic peptide receptors-C (NPRC) mRNA were low with no obvious change among different oviductal phases, the levels of ANP mRNA were high in oviduct(OT)1 , OT3 and OT5, but were very low in OT2. On the other hand, the levels of NPRA mRNA were low in OT1 and OT2, increased in OT3 and reached a maximum in OT4 and OT5. Western blot analysis revealed that the level of ANP was high in OT1, decreased in OT2 and OT3, and arrived at the nadir in OT4 and OT5. The effect of ANP on spermatozoa function was studied by the acrosome reaction and IVF. Incubation with ANP for 1 h significantly induced acrosome reaction of preincubated spermatozoa, and maximal response of acrosome reaction (34.1 ± 2.3%) was achieved at 1 nM ANP treatment. Both C-ANP-(4–23), a selective ligand of NPRC, and caffeine had no effect on the acrosome reaction. The stimulatory effect of ANP on acrosome reaction could be mimicked by the permeable cGMP analog, 8-Br-cGMP. ANP and caffeine had a similar effect on improving the oocytes penetration rate, polyspermy rate and the average number of sperm per penetrated oocyte. Also, ANP treatment had a similar effect on cleavage rate, blastocyst formation rate and the number of cells per blastocyst as that of caffeine treatment. The effects of ANP on the acrosome reaction and the parameters of oocyte penetration could be blocked by cGMP-dependent protein kinase (PKG) inhibitors KT5823 and/or Rp-8-pCPT-cGMPS. These results suggest that the expression of ANP in the oviduct may be involved in the regulation of the acrosome reaction and the fertilising ability of pig spermatozoa, and the PKG pathway possibly participates in the process.

Free access

Wenbin Shang, Ying Yang, Libin Zhou, Boren Jiang, Hua Jin and Mingdao Chen

A series of clinical trials and animal experiments have demonstrated that ginseng and its major active constituent, ginsenosides, possess glucose-lowering action. In our previous study, ginsenoside Rb1 has been shown to regulate peroxisome proliferator-activated receptor γ activity to facilitate adipogenesis of 3T3-L1 cells. However, the effect of Rb1 on glucose transport in insulin-sensitive cells and its molecular mechanism need further elucidation. In this study, Rb1 significantly stimulated basal and insulin-mediated glucose uptake in a time- and dose-dependent manner in 3T3-L1 adipocytes and C2C12 myotubes; the maximal effect was achieved at a concentration of 1 μM and a time of 3 h. In adipocytes, Rb1 promoted GLUT1 and GLUT4 translocations to the cell surface, which was examined by analyzing their distribution in subcellular membrane fractions, and enhanced translocation of GLUT4 was confirmed using the transfection of GLUT4-green fluorescence protein in Chinese Hamster Ovary cells. Meanwhile, Rb1 increased the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB), and stimulated phosphatidylinositol 3-kinase (PI3K) activity in the absence of the activation of the insulin receptor. Rb1-induced glucose uptake as well as GLUT1 and GLUT4 translocations was inhibited by the PI3K inhibitor. These results suggest that ginsenoside Rb1 stimulates glucose transport in insulin-sensitive cells by promoting translocations of GLUT1 and GLUT4 by partially activating the insulin signaling pathway. These findings are useful in understanding the hypoglycemic and anti-diabetic properties of ginseng and ginsenosides.

Free access

Chun Zeng, Xin Yi, Danny Zipris, Hongli Liu, Lin Zhang, Qiaoyun Zheng, Krishnamurthy Malathi, Ge Jin and Aimin Zhou

The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-dependent RNase L (RNase L), an IFNα-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type 1 diabetes. Using RNase L-deficient, rat insulin promoter-B7.1 transgenic mice, which are more vulnerable to harmful environmental factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin, a drug which can artificially induce type 1-like diabetes in experimental animals. Immunohistochemical staining results indicated that the population of infiltrated CD8+T cells was remarkably reduced in the islets of RNase L-deficient mice, indicating that RNase L may contribute to type 1 diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas under induced conditions. Our findings provide new insights into the molecular mechanism underlying β-cell destruction and may indicate novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L.

Free access

Xin-gang Yao, Xin Xu, Gai-hong Wang, Min Lei, Ling-ling Quan, Yan-hua Cheng, Ping Wan, Jin-pei Zhou, Jing Chen, Li-hong Hu and Xu Shen

Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca2 + channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells. An assay using the model of type 2 diabetic mice induced by high-fat diet combined with STZ (STZ/HFD) demonstrated that BBT administration efficiently restored β-cell functions as indicated by the increased plasma insulin level and decrease in the β-cell loss induced by STZ/HFD. Moreover, the results indicated that BBT treatment decreased fasting blood glucose and HbA1c and improved oral glucose tolerance further highlighting the potential of BBT in anti-hyperglycemia research.

Open access

Qinglei Yin, Liyun Shen, Yicheng Qi, Dalong Song, Lei Ye, Ying Peng, Yanqiu Wang, Zhou Jin, Guang Ning, Weiqing Wang, Dongping Lin and Shu Wang

SIRT1, a class III histone/protein deacetylase (HDAC), has been associated with autoimmune diseases. There is a paucity of data about the role of SIRT1 in Graves’ disease. The aim of this study was to investigate the role of SIRT1 in the pathogenesis of GD. Here, we showed that SIRT1 expression and activity were significantly decreased in GD patients compared with healthy controls. The NF-κB pathway was activated in the peripheral blood of GD patients. The reduced SIRT1 levels correlated strongly with clinical parameters. In euthyroid patients, SIRT1 expression was markedly upregulated and NF-κB downstream target gene expression was significantly reduced. SIRT1 inhibited the NF-κB pathway activity by deacetylating P65. These results demonstrate that reduced SIRT1 expression and activity contribute to the activation of the NF-κB pathway and may be involved in the pathogenesis of GD.