Search Results

You are looking at 101 - 110 of 3,426 items for

  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 2 x
Clear All Modify Search
Free access

SH Torres, JB De Sanctis, L M de Briceno, N Hernandez and HJ Finol

An inflammatory process may be involved in nitric oxide production in skeletal muscle of type 2 diabetic patients. Nitric oxide generation in skeletal muscle was assessed in 14 non-complicated type 2 diabetic patients and in 12 healthy subjects. In samples of quadriceps femoris muscle, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nitrite, nitrate and nitrotyrosine were determined. The macrophage-specific antigen CD163, the T-cell membrane factor CD154 and tumour necrosis factor-alpha (TNF-alpha) were also assayed. In six patients, ultrastructural analysis of muscle was performed. Nitrites and nitrates were increased in patients as compared to controls (22.7+/-4.5 and 32.7+/-7.0 vs 16.0+/-2.9 and 22.8+/-4.0 micromol/mg protein; P<0.001, Mann-Whitney U test). Endothelial NOS was similar in diabetic and control subjects (36.4+/-13.8 vs 36.3+/-6.8 ng/mg protein), contrasting with the significant increase of iNOS recorded in patients (34.3+/-13.0 vs 8.5+/-2.8 ng/mg protein, P<0.00002). Nitrotyrosine levels were higher in the patient than in the control group (42.1+/-24.4 vs 10.3+/-2.5 ng/mg protein, P<0.00002), as were CD163 (10-fold) and TNF-alpha (fourfold) levels. Furthermore, CD154 levels were detectable only in the patient samples (10.2+/-5.3 ng/mg protein). By multiple-regression analysis, changes in glycated haemoglobin values could predict 96% variation in nitrotyrosine. Macrophages were present in all muscle samples analysed by electromicroscopy. The increased levels of CD163, CD154 and TNF-alpha indicate that an inflammatory process occurs in skeletal muscle of type 2 diabetic patients. This may contribute to iNOS induction, muscle damage and insulin resistance.

Free access

P Grellier, D Berrebi, M Peuchmaur and S Babajko

With a view to investigating the implication of IGF-binding protein-6 (IGFBP-6) in the growth of neuroblastomas, nude mice were injected with IGFBP-6-expressing or control IGR-N-91 human neuroblastoma cells and the resulting xenografts examined. Expression of IGFBP-3, IGFBP-4 and type 1 and type 2 IGF receptor messengers was similar in control tumours and equal-sized IGFBP-6-expressing tumours that had developed. IGF-II was more strongly expressed in control tumours, and IGFBP-6-expressing tumours contained less IGFBP-2 than controls. In both populations, there was a significant positive correlation between IGF-II and IGFBP-2 expression. In small IGFBP-6-expressing xenografts where tumour development had apparently been arrested, haematoxylin--eosin and TUNEL staining revealed numerous apoptotic cells. In situ hybridization indicated homogeneous distribution of the IGFBP-6 signal in test tumours. In cell culture, IGFBP-6-expressing cells expressed similar amounts of IGFBP-2, IGF-II and N-myc mRNAs as control cells; but media conditioned by IGFBP-6-expressing cells contained less intact IGFBP-2 protein, with no increase in its proteolytic fragment. In media treated with plasminogen, in which IGFBP-2 was proteolysed, IGFBP-6 was increased. With its especially strong affinity for IGF-II and its resistance to proteolysis, IGFBP-6 would act by sequestering IGF-II, hence inhibiting its mitogenic and anti-apoptotic effects. In excess, IGFBP-6 would displace IGF-II from IGFBP-2 whose potentiation of IGF-II action would cease and whose susceptibility to degradation would be increased. This study therefore shows that IGFBP-6 plays a role in neuroblastoma cell growth in vivo and in vitro and that stable overexpression of IGFBP-6 leads to alteration of the initial balance between the IGFBPs.

Free access

B D Green, N Irwin, V A Gault, C J Bailey, F P M O’Harte and P R Flatt

Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic hormone proposed to play a role in both the pathophysiology and treatment of type 2 diabetes. This study has employed the GLP-1 receptor antagonist, exendin-4(9–39)amide (Ex(9–39)) to evaluate the role of endogenous GLP-1 in genetic obesity-related diabetes and related metabolic abnormalities using ob/ob and normal mice. Acute in vivo antagonistic potency of Ex(9–39) was confirmed in ob/ob mice by blockade of the insulin-releasing and anti-hyperglycaemic actions of intraperitoneal GLP-1. In longer term studies, ob/ob mice were given once daily injections of Ex(9–39) or vehicle for 11 days. Feeding activity, body weight, and both basal and glucose-stimulated insulin secretion were not significantly affected by chronic Ex(9–39) treatment. However, significantly elevated basal glucose concentrations and impaired glucose tolerance were evident at 11 days. These disturbances in glucose homeostasis were independent of changes of insulin sensitivity and reversed by discontinuation of the Ex(9–39) for 9 days. Similar treatment of normal mice did not affect any of the parameters measured. These findings illustrate the physiological extrapancreatic glucose-lowering actions of GLP-1 in ob/ob mice and suggest that the endogenous hormone plays a minor role in the metabolic abnormalities associated with obesity-related diabetes.

Free access

Chun Zeng, Xin Yi, Danny Zipris, Hongli Liu, Lin Zhang, Qiaoyun Zheng, Krishnamurthy Malathi, Ge Jin and Aimin Zhou

The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-dependent RNase L (RNase L), an IFNα-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type 1 diabetes. Using RNase L-deficient, rat insulin promoter-B7.1 transgenic mice, which are more vulnerable to harmful environmental factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin, a drug which can artificially induce type 1-like diabetes in experimental animals. Immunohistochemical staining results indicated that the population of infiltrated CD8+T cells was remarkably reduced in the islets of RNase L-deficient mice, indicating that RNase L may contribute to type 1 diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas under induced conditions. Our findings provide new insights into the molecular mechanism underlying β-cell destruction and may indicate novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L.

Free access

Zhengu Liu, Violeta Stanojevic, Luke J Brindamour and Joel F Habener

Type 2 diabetes, often associated with obesity, results from a deficiency of insulin production and action manifested in increased blood levels of glucose and lipids that further promote insulin resistance and impair insulin secretion. Glucolipotoxicity caused by elevated plasma glucose and lipid levels is a major cause of impaired glucose-stimulated insulin secretion from pancreatic β-cells, due to increased oxidative stress, and insulin resistance. Glucagon-like peptide-1 (GLP1), an insulinotropic glucoincretin hormone, is known to promote β-cell survival via its actions on its G-protein-coupled receptor on β-cells. Here, we report that a nonapeptide, GLP1(28–36)amide, derived from the C-terminal domain of the insulinotropic GLP1, exerts cytoprotective actions on INS-1 β-cells and on dispersed human islet cells in vitro in conditions of glucolipotoxicity and increased oxidative stress independently of the GLP1 receptor. The nonapeptide appears to enter preferably stressed, glucolipotoxic cells compared with normal unstressed cells. It targets mitochondria and improves impaired mitochondrial membrane potential, increases cellular ATP levels, inhibits cytochrome c release, caspase activation, and apoptosis, and enhances the viability and survival of INS-1 β-cells. We propose that GLP1(28–36)amide might be useful in alleviating β-cell stress and might improve β-cell functions and survival.

Free access

JJ Smink, JA Koedam, JG Koster and SC van Buul-Offers

High (pharmacological) doses of glucocorticoids inhibit the proliferation of growth plate chondrocytes, which leads to one of the side-effects of these steroids, namely suppression of longitudinal growth. Growth inhibition by glucocorticoids is thought to be mediated in part by impaired action of components of the IGF axis, which are important for chondrocyte regulation and hence for longitudinal growth. The aim of the present study was to determine whether glucocorticoid-induced growth retardation involves changes in IGF axis components. Chondrocytes were isolated from epiphyseal growth plates of neonatal piglets and treated with pharmacological doses of dexamethasone (DXM) for 24 h to study glucocorticoid-induced growth retardation. Under IGF-I-supplemented (10 nM) culture conditions, IGF-binding proteins (IGFBPs)-2, -4 and -5 were secreted by the growth plate chondrocytes and IGFBP-2 protein and mRNA levels were decreased by the DXM treatment, whereas IGFBP-4 and -5 were not affected. Proliferation of the chondrocytes, as measured by [(3)H]thymidine incorporation, was 3.5-fold higher in serum-supplemented medium in contrast to IGF-I-supplemented (10 nM) medium. In the presence of serum, DNA synthesis was significantly inhibited by 50-63% when treated with 100 nM DXM, which was prevented by the glucocorticoid-receptor antagonist Org34116. mRNA levels of IGF axis components were determined using Northern blot analysis. IGFBP-2 to -6 were expressed in the chondrocytes, IGFBP-1 was absent and both IGF-I and IGF-II, and the type I and type II IGF receptors were expressed. Treatment with DXM (100 nM) resulted in a 2-fold increase in mRNA levels of both IGFBP-5 and the type I IGF receptor, whereas IGFBP-2 mRNA levels decreased by 55%, in concert with the decrease in protein level observed under IGF-I-supplemented culture conditions. The changes in mRNA levels due to the DXM treatment were prevented by the glucocorticoid receptor antagonist. Our data show that exposure to pharmacological doses of DXM results in inhibition of proliferation and changes in components of the IGF axis, IGFBP-2 and -5 and the type I IGF receptor, suggesting a role for these components in glucocorticoid-induced growth retardation at the local level of the growth plate.

Restricted access

Anita Singh and M.J. Reed


Oestradiol-17β hydroxysteroid dehydrogenase (E2DH) is present in normal and malignant breast tissues and also in cultured breast cancer cells. It can act in a reductive direction to convert oestrone to the biologically active oestrogen, oestradiol, or in an oxidative direction to metabolize oestradiol to oestrone and may therefore have a crucial role in regulating breast tissue concentrations of oestradiol. Insulin-like growth factor-type I (IGF-I) and IGF-II are both mitogens for breast cancer cells. In this study we have examined the effect of these growth factors on the reductive and oxidative activities of E2DH in MCF-7 (receptor positive) and MDA-MB-231 (receptor negative) breast cancer cells. Both IGF-I (80 ng/ml) and IGF-II (80 ng/ml) significantly stimulated E2DH reductive activity (up to 138%) in MCF-7 cells but had no effect on oxidative activity. Addition of IGF-II (100 ng/ml) to MDA-MB-231 cells resulted in a small but statistically significant (p<0.05) increase in E2DH reductive activity (18%) but in these cells reductive activity is 25-70 times lower than oxidative activity. If IGF-I and IGF-II act to stimulate E2DH reductive activity in breast tumours then such a mechanism could account for the increased concentrations of oestradiol detected in breast tumours.

Free access

Haijiang Wu, Xinna Deng, Yonghong Shi, Ye Su, Jinying Wei and Huijun Duan

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by glucose metabolic disturbance. A number of transcription factors and coactivators are involved in this process. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is an important transcription coactivator regulating cellular energy metabolism. Accumulating evidence has indicated that PGC-1α is involved in the regulation of T2DM. Therefore, a better understanding of the roles of PGC-1α may shed light on more efficient therapeutic strategies. Here, we review the most recent progress on PGC-1α and discuss its regulatory network in major glucose metabolic tissues such as the liver, skeletal muscle, pancreas and kidney. The significant associations between PGC-1α polymorphisms and T2DM are also discussed in this review.

Free access

Haiyong Chen, Hui-Yao Lan, Dimitrios H Roukos and William C Cho

MicroRNAs (miRNAs) are small molecules negatively regulating gene expression by diminishing their target mRNAs. Emerging studies have shown that miRNAs play diverse roles in diabetes mellitus. Type 1 diabetes (T1D) and T2D are two major types of diabetes. T1D is characterized by a reduction in insulin release from the pancreatic β-cells, while T2D is caused by islet β-cell dysfunction in response to insulin resistance. This review describes the miRNAs that control insulin release and production by regulating cellular membrane electrical excitability (ATP:ADP ratio), insulin granule exocytosis, insulin synthesis in β-cells, and β-cell fate and islet mass formation. This review also examines miRNAs involved the insulin resistance of liver, fat, and skeletal muscle, which change insulin sensitivity pathways (insulin receptors, glucose transporter type 4, and protein kinase B pathways). This review discusses the potential application of miRNAs in diabetes, including the use of gene therapy and therapeutic compounds to recover miRNA function in diabetes, as well as the role of miRNAs as potential biomarkers for T1D and T2D.

Free access

Zhenping Liu, Per Bendix Jeppesen, Søren Gregersen, Lotte Bach Larsen and Kjeld Hermansen

Chronic hyperglycemia and hyperlipidemia cause deleterious effects on β-cell function. Interestingly, increased circulating amino acid (AA) levels are also a characteristic of the prediabetic and diabetic state. The chronic effects of AAs on β-cell function remain to be determined. Isolated mouse islets and INS-1E cells were incubated with or without excess leucine. After 72 h, leucine increased basal insulin secretion and impaired glucose-stimulated insulin secretion in both mouse islets and INS-1E cells, corroborating the existence of aminoacidotoxicity-induced β-cell dysfunction. This took place concomitantly with alterations in proteins and genes involved in insulin granule transport, trafficking (e.g. collapsin response mediator protein 2 and GTP-binding nuclear protein Ran), insulin signal transduction (proteasome subunit α type 6), and the oxidative phosphorylation pathway (cytochrome c oxidase). Leucine downregulated insulin 1 gene expression but upregulated pancreas duodenum homeobox 1 and insulin 2 mRNA expressions. Importantly, cholesterol (CH) accumulated in INS-1E cells concomitantly with upregulation of enzymes involved in CH biosynthesis (e.g. 3-hydroxy-3-methylglutaryl-CoA reductase, mevalonate (diphospho) decarboxylase, and squalene epoxidase) and LDL receptor, whereas triglyceride content was decreased. Our findings indicate that chronic exposure to elevated levels of leucine may have detrimental effects on both β-cell function and insulin sensitivity. Aminoacidotoxicity may play a pathogenic role in the development of type 2 diabetes.