Search Results

You are looking at 41 - 50 of 3,426 items for

  • Abstract: Islets x
  • Abstract: Insulin x
  • Abstract: BetaCells x
  • Abstract: Pancreas x
  • Abstract: Obesity x
  • Abstract: Glucose x
  • Abstract: Hyperglycemia x
  • Abstract: Hypoglycemia x
  • Abstract: Insulinoma x
  • Abstract: Glucagon x
  • Abstract: IGF* x
  • Abstract: Type 2 x
Clear All Modify Search
Free access

SJ Conroy, I Green, G Dixon, PM Byrne, J Nolan, YH Abdel-Wahab, N McClenaghan, PR Flatt and P Newsholme

We have previously reported that newly diagnosed Type-1 diabetic patient sera potently suppressed insulin secretion from a clonal rat pancreatic beta-cell line (BRIN BD11) but did not alter cell viability. Here, we report that apoptosis in BRIN BD11 cells incubated in various sera types (fetal calf serum (FCS), normal human serum and Type-1 diabetic patient) was virtually undetectable. Although low levels of necrosis were detected, these were not significantly different between cells incubated in sera from different sources. ATP levels were reduced by approximately 30% while nitrite production increased twofold from BRIN BD11 cells incubated for 24 h in the presence of Type-1 diabetic patient sera compared with normal human sera. Additionally, ATP levels were reduced by approximately 40% and DNA fragmentation increased by more than 20-fold in BRIN BD11 cells incubated in FCS in the presence of a pro-inflammatory cytokine cocktail (interleukin-1beta, tumour necrosis factor-alpha and interferon-gamma), compared with cells incubated in the absence of cytokines. Nitric oxide production from BRIN BD11 cells was markedly increased (up to 10-fold) irrespective of sera type when the cytokine cocktail was included in the incubation medium. Type-1 diabetic patient sera significantly (P<0.001) raised basal levels of intracellular free Ca(2+ )concentration ([Ca(2+)](i)) in BRIN BD11 cells after a 24-h incubation. The alteration in [Ca(2+)](i) concentration was complement dependent, as removal of the early complement components C1q and C3 resulted in a significant reduction (P<0.01) of sera-induced [Ca(2+)](i )changes. We propose that the mechanism of Type-1 diabetic patient sera-induced inhibition of insulin secretion from clonal beta-cells may involve complement-stimulated elevation of [Ca(2+)](i) which attenuates the nutrient-induced insulin secretory process possibly by desensitizing the cell to further changes in Ca(2+).

Restricted access

L E L Katz, A Bhala, E Camron, S E Nunn, R L Hintz and P Cohen

The IGFs are mitogenic agents which are closely linked to regulatory processes in carbohydrate metabolism. Because limited information is available on the occurrence of the IGF system in the pancreatic β-cell milieu, we evaluated the presence of IGFs, IGF receptors, and IGF-binding proteins (IGFBPs) in the β-cell lines βTC3 and HIT T-15. Serum-free conditioned media (SFCM) from βTC3 cells contained IGF-II at concentrations greater than 100 ng/ml. High (15 kDa) and low (7·5 kDa) molecular weight IGF-II were detected both by column chromatography followed by RIA and by immunoblotting. GH (10–1000 ng/ml) conditioning of βTC3 cells stimulated IGF-II secretion in a dose-dependent manner. IGF-II mRNA was detected in βTC3 cells using Northern blots, and also showed a GH-dependent relationship. IGF-II peptide was detected in SFCM from HIT cells, albeit at lower concentrations. To evaluate the presence of IGF receptors in β-cell lines, affinity cross-linking studies were performed on βTC3 cells, demonstrating type I IGF receptors which bound iodinated IGF-II with high affinity, iodinated IGF-I with lesser affinity, and had minimal appreciable binding to iodinated insulin. Type II IGF receptors were not detected. SFCM from βTC3 and HIT cells was subjected to Western ligand blotting, which disclosed the presence of two major IGFBPs of 29 kDa and 24 kDa, characteristic of IGFBP-2 and IGFBP-4. The identity of the specific IGFBPs was confirmed by immunoprecipitation and Northern blotting. Varying the glucose concentration had no significant effect on the levels of IGFBPs, nor did preconditioning with GH, IGF-I, IGF-II, insulin, or glucagon. Levels of both IGFBPs in βTC3 cell-conditioned media increased in the presence of dexamethasone at concentrations of 10−6 m or greater. In summary, we present evidence that β-cell lines comprise an environment for GH and IGF action. We speculate that IGFs, their receptors and binding proteins function as a complex interactive system which regulates β-cell growth and function.

Journal of Endocrinology (1997) 152, 455–464

Free access

Laura Marroqui, Eva Tudurí, Paloma Alonso-Magdalena, Iván Quesada, Ángel Nadal and Reinaldo Sousa dos Santos

Type 2 diabetes is a chronic, heterogeneous syndrome characterized by insulin resistance and pancreatic β-cell dysfunction or death. Among several environmental factors contributing to type 2 diabetes development, endocrine-disrupting chemicals (EDCs) have been receiving special attention. These chemicals include a wide variety of pollutants, from components of plastic to pesticides, with the ability to modulate endocrine system function. EDCs can affect multiple cellular processes, including some related to energy production and utilization, leading to alterations in energy homeostasis. Mitochondria are primarily implicated in cellular energy conversion, although they also participate in other processes, such as hormone secretion and apoptosis. In fact, mitochondrial dysfunction due to reduced oxidative capacity, impaired lipid oxidation and increased oxidative stress has been linked to insulin resistance and type 2 diabetes. Herein, we review the main mechanisms whereby metabolism-disrupting chemical (MDC), a subclass of EDCs that disturbs energy homeostasis, cause mitochondrial dysfunction, thus contributing to the establishment of insulin resistance and type 2 diabetes. We conclude that MDC-induced mitochondrial dysfunction, which is mainly characterized by perturbations in mitochondrial bioenergetics, biogenesis and dynamics, excessive reactive oxygen species production and activation of the mitochondrial pathway of apoptosis, seems to be a relevant mechanism linking MDCs to type 2 diabetes development.

Full access

Bernard Khoo and Tricia Mei-Mei Tan

Obesity represents an important public health challenge for the 21st century: globalised, highly prevalent and increasingly common with time, this condition is likely to reverse some of the hard-won gains in mortality accomplished in previous centuries. In the search for safe and effective therapies for obesity and its companion, type 2 diabetes mellitus (T2D), the gut hormone glucagon-like peptide-1 (GLP-1) has emerged as a forerunner and analogues thereof are now widely used in treatment of obesity and T2D, bringing proven benefits in improving glycaemia and weight loss, and, notably, cardiovascular outcomes. However, GLP-1 alone is subject to limitations in terms of efficacy; as a result, investigators are evaluating other gut hormones such as glucose-dependent insulinotropic peptide (GIP), glucagon and peptide YY (PYY) as possible partner hormones that may complement and enhance GLP-1’s therapeutic effects. Such combination gut hormone therapies are in pharmaceutical development at present and are likely to make it to market within the next few years. This review examines the physiological basis for combination gut hormone therapy and presents the latest clinical results that underpin the excitement around these treatments. We also pose, however, some hard questions for the field which need to be answered before the full benefit of such treatments can be realised.

Free access

Martina Bugáňová, Helena Pelantová, Martina Holubová, Blanka Šedivá, Lenka Maletínská, Blanka Železná, Jaroslav Kuneš, Petr Kačer, Marek Kuzma and Martin Haluzík

Liraglutide is the glucagon-like peptide-1 receptor agonist widely used for the treatment of type 2 diabetes mellitus. Recently, it has been demonstrated to decrease cardiovascular morbidity and mortality in patients with type 2 diabetes and high cardiovascular risk. Although the major modes of liraglutide action are well-known, its detailed action at the metabolic level has not been studied. To this end, we explored the effect of 2-week liraglutide treatment in C57BL/6 male mice with obesity and diabetes induced by 13 weeks of high-fat diet using NMR spectroscopy to capture the changes in urine metabolic profile induced by the therapy. The liraglutide treatment decreased body and fat pads weight along with blood glucose and triglyceride levels. NMR spectroscopy identified 11 metabolites significantly affected by liraglutide treatment as compared to high-fat diet-fed control group. These metabolites included ones involved in nicotinamide adenine dinucleotide metabolism, β-oxidation of fatty acids and microbiome changes. Although majority of the metabolites changed after liraglutide treatment were similar as the ones previously identified after vildagliptin administration in a similar mouse model, the changes in creatinine, taurine and trigonelline were specific for liraglutide administration. The significance of these changes and its possible use in the personalization of antidiabetic therapy in humans requires further research.

Restricted access

B. Lahlou, B. Fossat, J. Porthé-Nibelle, L. Bianchini and M. Guibbolini

ABSTRACT

Cyclic AMP levels were measured in freshly isolated hepatocytes of the rainbow trout. Compared with basal values, the average levels were increased up to 60 times in a dose-dependent manner either by mammalian glucagon (concentration range 1 nmol– 1 μmol/l; dose giving half maximum response (EC50) 0· 18 μmol/l) or by forskolin (concentration range 0·1–100 μmol/l; EC50 about 10 μmol/l). These stimulatory effects were partially inhibited by fish or mammalian neurohypophysial hormones used at relatively high concentrations (1–5 μmol/l). It is suggested that these results are evidence for the presence of V1-type receptors in fish hepatocytes. Together with previous results obtained with gills on the hormonal inhibition of adenylate cyclase activity, they suggest that teleost fish may possess only V1-type receptors (or two V1-related types), while the V2 receptors have evolved (or have become functional) in higher vertebrates.

J. Endocr. (1988) 119, 439–445

Free access

Xin-gang Yao, Xin Xu, Gai-hong Wang, Min Lei, Ling-ling Quan, Yan-hua Cheng, Ping Wan, Jin-pei Zhou, Jing Chen, Li-hong Hu and Xu Shen

Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca2 + channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells. An assay using the model of type 2 diabetic mice induced by high-fat diet combined with STZ (STZ/HFD) demonstrated that BBT administration efficiently restored β-cell functions as indicated by the increased plasma insulin level and decrease in the β-cell loss induced by STZ/HFD. Moreover, the results indicated that BBT treatment decreased fasting blood glucose and HbA1c and improved oral glucose tolerance further highlighting the potential of BBT in anti-hyperglycemia research.

Free access

L Monetini, F Barone, L Stefanini, A Petrone, T Walk, G Jung, R Thorpe, P Pozzilli and MG Cavallo

Enhanced cellular immune response to bovine beta-casein has been reported in patients with type 1 diabetes. In this study we aimed to establish beta-casein-specific T cell lines from newly diagnosed type 1 diabetic patients and to characterise these cell lines in terms of phenotype and epitope specificity. Furthermore, since sequence homologies exist between beta-casein and putative beta-cell autoantigens, reactivity to the latter was also investigated. T cell lines were generated from the peripheral blood of nine recent onset type 1 diabetic patients with different HLA-DQ and -DR genotypes, after stimulation with antigen pulsed autologous irradiated antigen presenting cells (APCs) and recombinant human interleukin-2 (rhIL-2). T cell line reactivity was evaluated in response to bovine beta-casein, to 18 overlapping peptides encompassing the whole sequence of beta-casein and to beta-cell antigens, including the human insulinoma cell line, CM, and a peptide from the beta-cell glucose transporter, GLUT-2. T cell lines specific to beta-casein could not be isolated from HLA-matched and -unmatched control subjects. beta-Casein T cell lines reacted to different sequences of the protein, however a higher frequency of T cell reactivity was observed towards the C-terminal portion (peptides B05-14, and B05-17 in 5/9 and 4/9 T cell lines respectively). Furthermore, we found that 1 out of 9 beta-casein-specific T cell lines reacted also to the homologous peptide from GLUT-2, and that 3 out of 4 of tested cell lines reacted also to extracts of the human insulinoma cell line, CM. We conclude that T cell lines specific to bovine beta-casein can be isolated from the peripheral blood of patients with type 1 diabetes; these cell lines react with multiple and different sequences of the protein particularly towards the C-terminal portion. In addition, reactivity of beta-casein T cell lines to human insulinoma extracts and GLUT-2 peptide was detected, suggesting that the potential cross-reactivity with beta-cell antigens deserves further investigation.

Free access

Alison J Forhead, Juanita K Jellyman, Katherine Gillham, Janelle W Ward, Dominique Blache and Abigail L Fowden

The actions of angiotensin II on type 1 (AT1) and type 2 (AT2) receptor subtypes are important for normal kidney development before birth. This study investigated the effect of AT1 receptor antagonism on renal growth and growth regulators in fetal sheep during late gestation. From 125 days of gestation (term 145±2 days), chronically catheterised sheep fetuses were infused intravenously for 5 days with either an AT1-specific receptor antagonist (GR138950, 2–4 mg/kg per day, n=5) or saline (0.9% NaCl, n=5). Blockade of the AT1 receptor decreased arterial blood oxygenation and pH and increased blood pCO2, haemoglobin and lactate, and plasma cortisol and IGF-II. Blood glucose and plasma thyroid hormones and IGF-I were unchanged between the treatment groups. On the 5th day of infusion, the kidneys of the GR-treated fetuses were lighter than those of the control fetuses, both in absolute and relative terms, and were smaller in transverse cross-sectional width and cortical thickness. In the GR-infused fetuses, renal AT2 receptor protein concentration and glomerular density were significantly greater than in the saline-infused fetuses. Blockade of the AT1 receptor had no effect on relative cortical thickness, fractional or mean glomerular volumes, or renal protein levels of the AT1 receptor, IGF type 1 receptor, insulin receptor or protein kinase C ζ. Therefore, in the ovine fetus, AT1 receptor antagonism causes increased renal protein expression of the AT2 receptor subtype, which, combined with inhibition of AT1 receptor activity, may be partly responsible for growth retardation of the developing kidney.

Free access

GW Aberdeen, GJ Pepe and ED Albrecht

In the present study, we determined whether expression of the messenger ribonucleic acids (mRNAs) for insulin-like growth factor-II (IGF-II), and its principal IGF type-1 receptor and IGF-binding protein-2 (IGFBP-2), as well as basic fibroblast growth factor (bFGF), was developmentally regulated in the baboon fetal adrenal gland. In the second phase of this study, fetal pituitary ACTH was suppressed by the administration of betamethasone to determine the possible effect on the mRNA levels for those factors, i.e. IGF-II and IGFBP-2, shown to be expressed at high levels in the adrenal late in fetal development. Adrenals were obtained from fetuses delivered via Cesarean section on days 60 (early), 100 (mid), and 165 (late) of gestation (term=184 days) from untreated baboons and on day 165 from baboons in which betamethasone was administered to the fetus, or to fetus and mother, every other day between days 150 and 164 of gestation. Although the mRNA levels of IGF-II in the fetal adrenal were similar at early, mid and late gestation, IGF type-1 receptor mRNA levels were approximately 2- to 3-fold greater (P<0.01) at mid than at early or late gestation. In contrast, there was an increase (P<0.001) in fetal adrenal IGFBP-2 and bFGF mRNA levels in late gestation. Although fetal adrenal weights and width of the zone of definitive/transitional cells exhibiting immunocytochemical staining for Delta(5)-3beta-hydroxysteroid dehydrogenase (3beta-HSD) were markedly suppressed (P<0.01) by the administration of betamethasone, IGF-II and IGFBP-2 mRNA expression was not decreased. In summary, very different patterns of mRNA levels for IGF-II, IGF type-1 receptor, IGFBP-2 and bFGF were exhibited in the developing baboon fetal adrenal gland, which may reflect functionally important differences in their respective cellular localization within the cortex, as well as a divergence in the functional development of the fetal, transitional and definitive zones of the baboon fetal adrenal cortex.