Search Results

You are looking at 101 - 110 of 359 items for :

  • "osteoblast" x
Clear All
Restricted access



Parathyroid hormone has a direct effect on the osteoclast population present at the time of administration of the hormone. There was a significant stimulation of nuclear RNA synthesis at the earliest time (1½ hr.) at which the measurement could be made. This is followed by increased production of cytoplasmic RNA which reaches its maximum after a considerable time-lag (7 to 12 hr. after parathyroid extract (PTE)). The increase in cytoplasmic RNA is accompanied by a corresponding stimulation of protein and mucoprotein synthesis in the osteoclasts and the effect persists at least until 24 hr. This time-lag and the relatively long duration of the effect on protein synthesis can be correlated approximately with the effect on the plasma calcium level. It is suggested therefore that the rise in plasma calcium is mainly due to the increased cellular activity of the osteoclasts and the resulting increased bone resorption. The opposite effect on the osteoblast system has about the same time-sequence and would complement the effect on the osteoclast system. At about the same time as the maximum increase in cellular activity in the osteoclasts is observed, a significant effect on RNA synthesis in the endosteal mesenchymal cells, the precursors of the osteoclasts, becomes apparent. This is closely followed by a rise in the number of osteoclasts which is first apparent at 17 hr. after PTE and is maximal by 24 hr. Consequently, the rise in the number of osteoclasts is a secondary effect and is not responsible for the initial rise in plasma calcium which occurred much earlier. It is suggested that the increase in osteoclast numbers follows as a result of the increased metabolic activity of the osteoclast population present when the hormone was injected.

There is a depression of RNA synthesis in both the osteoblasts and their precursors, the preosteoblasts. This means that the hormone has opposite effects, not only on the osteoblasts and osteoclasts, but also on their respective precursors, indicating that osteoprogenitor cells contain a mixture of cells with two main lines, those differentiating in an osteoblastic or osteoclastic direction, respectively.

Free access

S Keila, A Kelner and M Weinreb

Prostaglandin E(2) (PGE(2)) has been shown to exert a bone anabolic effect in young and adult rats. In this study we tested whether it possesses a similar effect on bone formation and bone mass in aging rats. Fifteen-month-old rats were injected daily with either PGE(2) at 5 mg/kg or vehicle for 14 days. PGE(2) treatment stimulated the rate of cancellous bone formation (a approximately 5.5-fold increase in bone formation rate), measured by the incorporation of calcein into bone-forming surfaces at the tibial proximal metaphysis. This effect resulted in increased cancellous bone area (+54%) at the same site. Since PGE(2) treatment resulted in a much higher proportion of bone surface undergoing bone formation and thus lined with osteoblasts, we tested the hypothesis that PGE(2) stimulates osteoblast differentiation from bone marrow precursor cells both in vivo and in vitro. We found that ex vivo cultures of bone marrow stromal cells from rats injected for 2 weeks with PGE(2) at 5 mg/kg per day yielded more ( approximately 4-fold) mineralized nodules and exhibited a greater (by 30-40%) alkaline phosphatase activity compared with cultures from vehicle-injected rats, attesting to a stimulation of osteoblastic differentiation by PGE(2). We also compared the osteogenic capacity of bone marrow from aging (15-month-old) versus young (5-week-old) rats and its regulation by PGE(2) in vitro. Bone marrow stromal cell cultures from aging rats exhibited a greatly diminished osteogenic capacity, reflected in reduced nodule formation ( approximately 6% of young animals) and lower alkaline phosphatase activity ( approximately 60% of young animals). However, these parameters could be stimulated in both groups of animals by incubation with 10-100 nM PGE(2). The magnitude of this stimulation was greater in cultures from aging rats (+550% vs +70% in nodule formation of aging compared with young rats). In conclusion, we demonstrate here that PGE(2) exerts a bone anabolic effect in aging rats, similar to the effect we and others have reported in young, growing rats. The PGE(2)-stimulated bone formation, which augments bone mass, most likely results from recruitment of osteoblasts from their bone marrow stromal precursors.

Restricted access

T. J. Allain and A. M. McGregor


There is immense current interest in the effects of thyroid hormones on bone. This is largely due to concern that patients on thyroxine replacement therapy are at increased risk of developing osteoporosis; this concern follows a number of reports describing reduced bone mineral density in this group of patients. The issue is, however, uncertain and the purpose of this review is (i) to summarize what is known about the effects of thyroid hormones on bone at both an experimental and clinical level and (ii) to try to reach a greater understanding of the problem and its implications for patient management.

Bone biology

Bone remodelling requires the tightly coupled actions of osteoclasts and osteoblasts. A normal bone remodelling cycle takes approximately 200 days. Each cycle begins with activation of cells which become osteoclasts and start resorbing bone. This phase lasts for about 50 days and is terminated

Restricted access

P Grellier, D Feliers, D Yee, K Woodruff and S L Abboud


IGF-I and -II play an important role in regulating bone formation. Bone marrow stromal cells, particularly those with osteoblast-like features, may act in concert with osteoblasts to increase IGF-I and -II levels in the bone microenvironment. Local bioavailability of IGFs, however, is modulated by IGF binding proteins (IGFBPs). We have previously demonstrated that murine TC-1 stromal cells constitutively secrete IGF-I and IGFBPs. In the present study, we determined the phenotype of these cells and used them as a model to explore the effect of IGFBPs on IGF-I-induced mitogenesis. The effect of IGF-I on IGFBPs expressed by TC-1 was also determined. When grown under conditions that promote osteogenic differentiation, TC-1 cells showed high alkaline phosphatase activity and mRNA levels, weakly expressed osteocalcin mRNA, and formed mineralized bone-like nodules. TC-1 cells expressed IGF-I and IGF-II mRNAs, while other stromal phenotypes preferentially expressed IGF-I. IGF-I stimulated TC-1 DNA synthesis in a dose-dependent manner and this effect was inhibited by recombinant IGFBP-1 and -4. Since IGF-I may regulate IGFBP production, the effect of IGF-I on IGFBPs expressed by TC-1 cells was determined. IGF-I increased the abundance of IGFBP-3, -4 and -5 in TC-1 conditioned medium; this correlated with induction of IGFBP-3 mRNA, but not with that of IGFBP-4 or -5 mRNAs. The findings demonstrate that most stromal cells express IGF-I which may act in an autocrine and/or paracrine fashion. The local effects of IGF-I, however, may be blocked by IGFBP-1 or -4. IGF-I regulates the relative abundance of IGFBPs in stromal cells which, in turn, may influence IGF-I-mediated effects on bone remodeling.

Journal of Endocrinology (1996) 149, 519–529

Free access

T Watanabe, T Kukita, A Kukita, N Wada, K Toh, K Nagata, H Nomiyama and T Iijima

Macrophage inflammatory protein-1alpha (MIP-1alpha) is a member of the CC chemokines. We have previously reported the use of a whole bone marrow culture system to show that MIP-1alpha stimulates the formation of osteoclast-like multinucleated cells. Here we use rat bone marrow cells deprived of stromal cells, and clones obtained from murine macrophage-like cell line RAW264 to show that MIP-1alpha acts directly on cells in osteoclast lineage. We obtained several types of RAW264 cell clones, one of these clones, designated as RAW264 cell D clone (D clone), showed an extremely high response to receptor activator of NFkappaB ligand (RANKL) and tumor necrosis factor-alpha (TNF-alpha), while the other clone, RAW264 cell N clone (N clone), demonstrated no response to RANKL or TNF-alpha. Although both clones expressed receptor activator NFkappaB (RANK) before being stimulated for differentiation, only the D clone expressed cathepsin K when cells were stimulated to differentiate to osteoclasts. MIP-1alpha stimulated the formation of mononuclear preosteoclast-like cells from rat bone marrow cells deprived of stromal cells. MIP-1alpha also stimulated formation of osteoclast-like multinucleated cells from the D clone, when these cells were stimulated with RANKL and TNF-alpha. These findings provide strong evidence to show that MIP-1alpha acts directly on cells in the osteoclast lineage to stimulate osteoclastogenesis. Furthermore, pretreatment of RAW264 cell D clone with MIP-1alpha significantly induced adhesion properties of these cells to primary osteoblasts, suggesting a crucial role for MIP-1alpha in the regulation of the interaction between osteoclast precursors and osteoblasts in osteoclastogenesis.

Free access

A Tumber, S Papaioannou, J Breckon, MC Meikle, JJ Reynolds and PA Hill

The aims of this study were to identify the role and sites of action of serine proteinases (SPs) in bone resorption, a process which involves a cascade of events, the central step of which is the removal of bone matrix by osteoclasts (OCs). This resorbing activity, however, is also determined by recruitment of new OCs to future resorption sites and removal of the osteoid layer by osteoblasts (OBs), which enables OCs to gain access to the underlying mineralized bone. The resorption systems we have studied consisted of (i) neonatal calvarial explants, (ii) isolated OCs cultured on ivory slices, (iii) mouse OBs cultured on either radiolabelled type I collagen films or bone-like matrix, (iv) bone marrow cultures to assess OC formation and (v) 17-day-old fetal mouse metatarsal bone rudiments to assess OC migration and fusion. Two separate SP inhibitors, aprotinin and alpha(2)-antiplasmin dose-dependently inhibited (45)Ca release from neonatal calvarial explants: aprotinin (10(-6) M) was the most effective SP inhibitor, producing a maximum inhibitory effect of 55.9%.Neither of the SP inhibitors influenced either OC formation or OC resorptive activity. In contrast, each SP inhibitor dose-dependently inhibited OB-mediated degradation of both type I collagen fibrils and non-mineralized bone matrix. In 17-day-old metatarsal explants aprotinin produced a 55% reduction in the migration of OCs from the periosteum to the mineralized matrix after 3 days in culture but after 6 days in culture aprotinin was without effect on OC migration. Primary mouse osteoblasts expressed mRNA for urokinase type plasminogen activator (uPA), tIssue type plasminogen activator (tPA), the type I receptor for uPA, plasminogen activator inhibitor types I and II and the broad spectrum serine proteinase inhibitor, protease nexin I. In situ hybridization demonstrated expression of tPA and uPA in osteoclasts disaggregated from 6-day-old mouse long bones. We propose that the regulation of these various enzyme systems within bone tIssue determines the sites where bone resorption will be initiated.

Restricted access

I. P. Braidman, J. G. St John, D. C. Anderson and W. R. Robertson


The mechanism by which parathyroid hormone (PTH) induces osteoclastic bone resorption is still incompletely understood. Recent evidence suggests that the hormone exerts its effects indirectly, via the osteoblasts. Bone cells isolated from fetal rat calvaria by enzymatic digestion were used. Two heterogeneous cell populations were isolated by equilibrium density centrifugation on Percoll gradients and maintained by differential culture conditions. These two populations, which are morphologically distinguishable from one another by light and electron microscopy, have been characterized previously both biochemically and with regard to their hormonal (PTH and calcitonin) responses. We have called them type C cells (containing cells with some of the properties of osteoclasts) and type B cells (containing osteoblast-like cells, as well as fibroblasts, chondrocytes and other stromal cells). In the present study, we have further characterized the functional relationship between the two cell populations, with particular regard to the hormonal responses of type C cultures. Acid phosphatase, measured cytochemically in individual cells, was used as a marker for C cell responses.

C cells had significantly higher levels of acid phosphatase activity than either B cells or spleen macrophages. Calcitonin (0–10 pg/ml) decreased C cell acid phosphatase activity but was without effect on B cells or spleen macrophages. Co-culture of C cells with B cells produced increased enzyme activity only in the former; this effect could be mimicked if fibroblasts replaced B cells and cell contact was essential for this response. PTH (0–10 pg/ml) raised enzyme activity further in C cells only when they were cultured with B cells. When C cells were cultured so that they shared medium, but were not in contact, with B cells, PTH (2 pg/ml) still increased enzyme activity in the former. Fibroblasts were ineffective in this system. Spleen macrophages were also unresponsive to PTH when substituted for C cells. Calcitonin (10 pg/ml) blocked the effects of PTH on C cells. These results indicate that macrophages are probably not a significant proportion of the C cell population, and that PTH may produce increased acid phosphatase activity in C cells via a humoral factor produced by cells present in B cell cultures.

J. Endocr. (1986) 111, 17–26

Free access

BC van der Eerden, CW Lowik, JM Wit and M Karperien

Estrogens are essential for bone mass accrual but their role before sexual maturation has remained elusive. Using in situ hybridization and immunohistochemistry, we investigated the expression of both estrogen receptor (ER) alpha and beta mRNA and protein as well as several mRNAs coding for enzymes involved in sex steroid metabolism (aromatase, type I and II 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD), steroid sulfatase (STS) and type I 5 alpha-reductase) on sections of tibial metaphyses before (1- and 4-week-old), during (7-week-old) and after (16-week-old) sexual maturation in female and male rats. ER alpha and ER beta mRNA and protein were detected in metaphyseal bone in lining cells, osteoblasts, osteoclasts and some osteocytes with no apparent differences in expression during development or between the sexes. In contrast, aromatase, type I and II 17 beta-HSD and type I 5 alpha-reductase mRNAs were first detected in osteoblasts, osteoclasts and occasionally in osteocytes from sexual maturation (7-week-old rat) and onwards. Only STS was present before sexual maturation. To study the significance of ER alpha and beta expression in bone before sexual maturation when circulating sex steroid levels are low, 26-day-old female and male rats underwent gonadectomy or 17 beta-estradiol (E(2)) supplementation (0.5 mg/21 days) during 3 weeks. Following gonadectomy, trabecular bone volume (TBV) was lower in males (P=0.03) and there was a trend towards reduction in females (P=0.057). E(2) supplementation increased tibial TBV compared with controls in both genders as assessed by Masson-Goldner staining. These data suggest that the presence of ERs in bone cells before sex maturation might be of significance for bone mass accrual. Furthermore, based on the mRNA expression of the crucial enzymes aromatase and type I 17 beta-HSD, we suggest that bone cells in the tibial metaphysis acquire the intrinsic capacity to metabolize sex steroids from sexual maturation onwards. This process may contribute to the beneficial effects of estrogen on bone mass accrual, possibly by intracrinology.

Restricted access

M. C. Slootweg, W. W. Most, E. van Beek, L. P. C. Schot, S. E. Papapoulos and C. W. G. M. Löwik


Insulin-like growth factor-I (IGF-I) is a potent stimulator of bone formation. Whether this growth factor also induces bone resorption has not been studied in detail. We used two organ culture systems to examine the direct effect of IGF-I on bone resorption. Fetal mouse radii/ulnae, containing mature osteoclasts, showed no response to IGF-I, indicating that osteoclastic activity is not influenced by IGF-I. Fetal mouse metacarpals/metatarsals, containing just osteoclast precursors and progenitors, showed an increase in resorption in response to IGF-I, indicating that IGF-I stimulates the formulation of osteoclast precursors/progenitors and thereby increases the number of osteoclasts.

Interleukin-6 (IL-6) has been hypothesized to be a mediator of bone resorptive agents such as parathyroid hormone (PTH). Both radii/ulnae and metacarpals/metatarsals reacted to IGF-I with an increase in IL-6 production. IL-6 production by UMR-106 osteogenic osteosarcoma cells was positively modulated by IGF-I, indicating that osteoblasts are likely to be the cells responsible for increased IL-6 production by the bones, and that IL-6 might be a mediatory of IGF-I-stimulated bone resorption.

Journal of Endocrinology (1992) 132, 433–438

Restricted access

M. Kubota, K. W. Ng, J. Murase, T. Noda, J. M. Moseley and T. J. Martin


Five synthetic analogues of human parathyroid hormone (hPTH), (Tyr34)hPTH(3–34) amide, (5–34) amide, (7–34) amide, (8–34) amide and (9–34) amide, were tested for their ability to antagonize hPTH action specifically in intact cultured cells. Clonal rat osteogenic sarcoma cells were used (UMR 106–06 line) which respond to PTH with an increase in cyclic AMP (cAMP) formation. The most potent antagonists were (Tyr34)hPTH(3–34) amide and (5–34) amide, which inhibited the effect of hPTH(2·4 nmol/l) with half maximally effective concentrations of 0·1 μmol/l. When conditioned medium was used from a human lung cancer cell line producing osteoblast adenylate cyclase-stimulating activity, these two analogues were capable of inhibiting the increase in cAMP production. The specificity of the antagonism was indicated by the inability of the analogues to influence the effects of prostaglandin E2 or of calcitonin, which are alternative stimulators of cAMP production in the osteogenic sarcoma cells. Only (Tyr34)hPTH(3–34) amide showed some PTH-like agonist activity at high concentrations. These analogues should prove valuable in the investigation of PTH actions on target cells and of tumour products which appear to act through the PTH receptor.

J. Endocr. (1986) 108, 261–265