Search Results

You are looking at 21 - 30 of 177 items for :

  • bone formation and resorption x
Clear All
Restricted access

J M Lean, J W M Chow and T J Chambers

Abstract

We have recently found that administration of oestradiol-17β (OE2) to rats stimulates trabecular bone formation. It is not known, however, whether oestrogen has a similar action on bone formation rate under physiological circumstances. Oestrogen is known to suppress bone resorption, and oestrogen-deficient states in the rat, as in humans, are associated with an increase in bone resorption that entrains an increase in bone formation. To see if the latter masks a relative reduction in bone formation, due to oestrogen deficiency, we measured bone formation very early after ovariectomy, before the resorption-induced increase in bone formation becomes established. To do this, rats were administered fluorochrome labels before and after ovariectomy, spaced at weekly intervals in the first, and 3-day intervals in the second experiment.

In both experiments there was a decrease in indices of bone formation in the labelling interval immediately following ovariectomy such that, using the shorter fluorochrome intervals, the mineral apposition rate fell to 69%, the double-labelled surface to 45%, and the bone formation rate to 36% of sham-ovariectomized levels. The reduction was not sustained in the subsequent label intervals, presumably masked by the increase in bone formation attributable to increased resorption. These results suggest that if bone formation is assessed before this resorption-entrained increase in bone formation occurs, oestrogen deficiency is associated with a reduction in dynamic indices of bone formation. Thus, these experiments suggest that oestrogen stimulates bone formation under physiological circumstances, and that the osteopaenia that follows oestrogen deficiency may be attributable not only to an increase in bone resorption, but also to a relative deficiency in bone formation.

Journal of Endocrinology (1994) 142, 119–125

Restricted access

R Hatton, M Stimpel and T J Chambers

Abstract

During bone resorption, osteoclasts are closely associated with endothelial cells. The latter are able to produce several agents that regulate bone resorption. In view of the increasing evidence that angiotensin II, which can be generated by endothelial cells, has actions outside the traditional renin-angiotensin system, we tested the effect of angiotensin II on bone resorption. Angiotensin II showed no effect either on osteoclast formation or on bone resorption by isolated osteoclasts. However, in co-cultures of osteoclasts with calvarial or MC3T3-E1 osteoblastic cells, and in osteoclastic cultures co-cultured with other bone cells obtained by prolonged sedimentation, angiotensin II stimulated bone resorption to a similar degree to that observed with 1,25(OH)2 vitamin D3. Stimulation of resorption was noted at concentrations of 10−7 m and above. We found that angiotensin I also stimulated bone resorption in co-cultures of osteoclasts with osteoblastic cells, and that this action was inhibited by inhibitors of angiotensin-converting enzyme. These results identify angiotensin I and II as potent stimulators of osteoclastic bone resorption, and raise the possibility that bone might contain a tissue-renin-angiotensin system that might play a role in the regulation of bone resorption.

Journal of Endocrinology (1997) 152, 5–10

Restricted access

J H Tobias, A Gallagher and T J Chambers

Abstract

Although short-term administration of oestradiol-17β (OE2) stimulates cancellous bone formation in the rat, this is replaced by a tendency to suppression after prolonged treatment. Hence, in rats rendered osteopaenic by ovariectomy, OE2 administration fails either to induce a sustained increase in bone formation or to restore bone volume. A possible explanation for this failure is that OE2 also inhibits bone resorption, secondarily suppressing bone formation through coupling mechanisms. We therefore investigated whether the effects of OE2 treatment might be modified by intermittently stimulating bone resorption with retinoic acid (120mg/kg daily) for 4 out of every 20 days. We found, in a preliminary experiment using intact animals, that intermittent retinoic acid reduced cancellous bone volume, consistent with previously documented stimulation of bone resorption by retinoic acid. Rats were then rendered osteopaenic by ovariectomy, and given vehicle, retinoic acid and/or OE2. We found that animals treated with intermittent retinoic acid and OE2 showed a substantial increase in cancellous bone volume compared with ovariectomized animals treated with vehicle, retinoic acid alone or OE2 alone. Therefore, intermittent retinoic acid appears to cause a net increase in bone formation over resorption when given to ovariectomized animals in conjunction with OE2. We conclude that the effects of OE2 on cancellous bone are modified by intermittent treatment with retinoic acid, resulting in a substantial increase in bone volume.

Journal of Endocrinology (1994) 142, 61–67

Restricted access

J. H. Tobias and T. J. Chambers

ABSTRACT

While the osteopenia associated with oestrogen deficiency is thought to arise from a relative defect in bone formation with respect to resorption, oestrogen administration itself leads to a decrease, rather than an increase, in bone formation. This decrease in bone formation, which arises from oestrogen's inhibitory effect on bone turnover, presumably masks any underlying tendency of oestrogen treatment towards stimulation of bone formation. To investigate this further, we have examined the early effect of discontinuing the administration of oestradiol-17β (OE2; 40 μg/kg on bone formation indices in ovariectomized 13-week-old rats, before the turnover-induced increase in formation occurs. Histomorphometric indices were assessed at the proximal tibial metaphysis 0, 7, 10, 13 and 16 days following discontinuation of OE2 treatment. Measurements of body weight, uterine weight and longitudinal growth rate confirmed that there were rapid effects of OE2 deficiency on these parameters.

We could detect no significant increase in bone resorption, as measured by osteoclast surface and number, until 16 days after ending treatment with OE2; this was coincidental with a reduction in bone volume. Shorter periods of OE2 deficiency were associated with a marked decrease in bone formation, as assessed by dynamic histomorphometric indices. This inhibition of bone formation was largely due to a reduction in double fluorochrome-labelled trabecular surfaces, which were decreased by approximately 70%. We conclude that ending OE2 administration in ovariectomized rats caused a striking decrease in trabecular bone formation, if such indices are assessed prior to the subsequent turnover-induced increase in formation. This suggests that oestrogen treatment in ovariectomized rats is associated with a stimulatory effect on bone formation, in addition to its recognized anti-resorptive action.

Journal of Endocrinology (1993) 137, 497–503

Free access

T Hirayama, A Sabokbar and NA Athanasou

Chronic corticosteroid treatment is known to induce bone loss and osteoporosis. Osteoclasts are specialised bone-resorbing cells that are formed from mononuclear phagocyte precursors that circulate in the monocyte fraction. In this study we have examined the effect of the synthetic glucocorticoid, dexamethasone, on human osteoclast formation and bone-resorbing activity. Human monocytes were cultured for up to 21 days on glass coverslips and dentine slices, with soluble receptor activator for nuclear factor kappaB ligand (RANKL; 30 ng/ml) and human macrophage-colony stimulating factor (M-CSF; 25 ng/ml) in the presence and absence of dexamethasone (10(-8) M). The addition of dexamethasone over a period of 7 and 14 days of culture of monocytes (during which cell proliferation and differentiation predominantly occurred) resulted in a marked increase in the formation of tartrate-resistant acid phosphatase-positive multinucleated cells and an increase in lacunar resorption. The addition of dexamethasone to monocyte cultures after 14 days (when resorptive activity of osteoclasts had commenced) reduced the extent of lacunar resorption compared with cultures to which no dexamethasone had been added. The addition of dexamethasone to osteoclasts isolated from giant cell tumours of bone significantly inhibited resorption pit formation. Our findings indicate that dexamethasone has a direct effect on osteoclast formation and activity, stimulating the proliferation and differentiation of human osteoclast precursors and inhibiting the bone-resorbing activity of mature osteoclasts.

Free access

BS Moonga, OA Adebanjo, HJ Wang, S Li, XB Wu, B Troen, A Inzerillo, E Abe, C Minkin, CL Huang and M Zaidi

The effects of the related cytokines interleukin-6 (IL-6), leukemia inhibitory factor (LIF) and oncostatin-M on bone resorption and cytosolic Ca(2+) signaling were compared in isolated rat osteoclasts. In the traditional disaggregated osteoclast (pit) assay, IL-6 and LIF, but not oncostatin-M, conserved the bone resorption otherwise inhibited by high extracellular [Ca(2+)] (15 mM). It produced a paradoxical, concentration-dependent stimulation of resorption by elevated extracellular Ca(2+). In the micro-isolated single osteoclast resorption assay, IL-6, high [Ca(2+)] or IL-6 plus high [Ca(2+)] all increased pit formation. In contrast, the IL-6 receptor (IL-6R)-specific agonist antibody MT-18 inhibited bone resorption in a concentration-dependent manner (1:500 to 1:500 000). MT-18 triggered cytosolic Ca(2+) signals in fura 2-loaded osteoclasts within approximately 10 min of application. Each cytosolic Ca(2+) transient began with a peak deflection that persisted in Ca(2+)-free, EGTA-containing extracellular medium, consistent with a release of intracellularly stored Ca(2+). This was followed by a sustained elevation of cytosolic [Ca(2+)] that was abolished in Ca(2+)-free medium, as expected from an entry of extracellular Ca(2+), and by the Ca(2+) channel antagonist Ni(2+). The inclusion of either IL-6 or soluble human (sh) IL-6R specifically reversed both the above effects of MT-18, confirming that both effects were specific for the IL-6R. The findings suggest that IL-6R activation by IL-6 stimulates osteoclastic bone resorption either by reversing the inhibitory effect of high extracellular Ca(2+) in stromal-containing systems or itself stimulating bone resorption along with Ca(2+) by micro-isolated osteoclasts. In contrast, activation of the IL-6R by an agonist antibody produces an inhibition of bone resorption and an associated triggering of the cytosolic Ca(2+) signals previously associated with regulation of bone resorptive function in other situations.

Free access

A Tumber, S Papaioannou, J Breckon, MC Meikle, JJ Reynolds and PA Hill

The aims of this study were to identify the role and sites of action of serine proteinases (SPs) in bone resorption, a process which involves a cascade of events, the central step of which is the removal of bone matrix by osteoclasts (OCs). This resorbing activity, however, is also determined by recruitment of new OCs to future resorption sites and removal of the osteoid layer by osteoblasts (OBs), which enables OCs to gain access to the underlying mineralized bone. The resorption systems we have studied consisted of (i) neonatal calvarial explants, (ii) isolated OCs cultured on ivory slices, (iii) mouse OBs cultured on either radiolabelled type I collagen films or bone-like matrix, (iv) bone marrow cultures to assess OC formation and (v) 17-day-old fetal mouse metatarsal bone rudiments to assess OC migration and fusion. Two separate SP inhibitors, aprotinin and alpha(2)-antiplasmin dose-dependently inhibited (45)Ca release from neonatal calvarial explants: aprotinin (10(-6) M) was the most effective SP inhibitor, producing a maximum inhibitory effect of 55.9%.Neither of the SP inhibitors influenced either OC formation or OC resorptive activity. In contrast, each SP inhibitor dose-dependently inhibited OB-mediated degradation of both type I collagen fibrils and non-mineralized bone matrix. In 17-day-old metatarsal explants aprotinin produced a 55% reduction in the migration of OCs from the periosteum to the mineralized matrix after 3 days in culture but after 6 days in culture aprotinin was without effect on OC migration. Primary mouse osteoblasts expressed mRNA for urokinase type plasminogen activator (uPA), tIssue type plasminogen activator (tPA), the type I receptor for uPA, plasminogen activator inhibitor types I and II and the broad spectrum serine proteinase inhibitor, protease nexin I. In situ hybridization demonstrated expression of tPA and uPA in osteoclasts disaggregated from 6-day-old mouse long bones. We propose that the regulation of these various enzyme systems within bone tIssue determines the sites where bone resorption will be initiated.

Restricted access

T R Arnett, R Lindsay, J M Kilb, B S Moonga, M Spowage and D W Dempster

Abstract

We investigated the actions of the trans- and cis-isomers of tamoxifen on the function of neonatal rat osteoclasts in vitro. Both compounds inhibited resorption pit formation by osteoclast-containing mixed bone cell cultures incubated for 24 h on cortical bone slices. Cell counts revealed that the inhibition was closely related to a cytotoxic effect, to which osteoclasts appeared particularly sensitive. Partial inhibition of resorption was seen in the presence of 2 μm trans-tamoxifen, whereas complete abolition of resorption and osteoclast viability occurred with 10 μm trans-tamoxifen; survival of mononuclear cells was unimpaired at either concentration. Cis-tamoxifen appeared to be slightly more toxic, with significant inhibitions of osteoclast viability and thus resorption pit formation at a concentration of 2 μm, and also of mononuclear cell numbers at 10 μm. Time-lapse video observations indicated that osteoclast death occurred rapidly (within 2–3 h) following exposure to 10 μm of either trans-tamoxifen or cis-tamoxifen. The morphological appearance of the dying cells was consistent with apoptosis. These results may help to explain the anti-resorptive action of tamoxifen seen in vivo in rats and humans. In contrast, oestradiol-17β consistently exerted no significant effects on resorption pit formation by rat osteoclasts over 24 h, even at grossly supraphysiological concentrations (up to 10 μm).

Journal of Endocrinology (1996) 149, 503–508

Restricted access

M. C. Slootweg, W. W. Most, E. van Beek, L. P. C. Schot, S. E. Papapoulos and C. W. G. M. Löwik

ABSTRACT

Insulin-like growth factor-I (IGF-I) is a potent stimulator of bone formation. Whether this growth factor also induces bone resorption has not been studied in detail. We used two organ culture systems to examine the direct effect of IGF-I on bone resorption. Fetal mouse radii/ulnae, containing mature osteoclasts, showed no response to IGF-I, indicating that osteoclastic activity is not influenced by IGF-I. Fetal mouse metacarpals/metatarsals, containing just osteoclast precursors and progenitors, showed an increase in resorption in response to IGF-I, indicating that IGF-I stimulates the formulation of osteoclast precursors/progenitors and thereby increases the number of osteoclasts.

Interleukin-6 (IL-6) has been hypothesized to be a mediator of bone resorptive agents such as parathyroid hormone (PTH). Both radii/ulnae and metacarpals/metatarsals reacted to IGF-I with an increase in IL-6 production. IL-6 production by UMR-106 osteogenic osteosarcoma cells was positively modulated by IGF-I, indicating that osteoblasts are likely to be the cells responsible for increased IL-6 production by the bones, and that IL-6 might be a mediatory of IGF-I-stimulated bone resorption.

Journal of Endocrinology (1992) 132, 433–438

Restricted access

D. N. KALU, CARMEL HILLYARD and G. V. FOSTER

SUMMARY

The effect of glucagon on bone was studied in rats. Urinary hydroxyproline excretion and incorporation of [3H]proline into bone hydroxyproline were used as indices of bone collagen breakdown and formation respectively. Parathyroid extract (15 USP units/rat/h, i.v.), infused into thyroparathyroidectomized animals, increased urinary hydroxyproline excretion. This increase was nullified by simultaneous administration of glucagon (50 μg/rat/h, i.v.). Rats treated with glucagon for 12 days (30 μg/100 g/day, s.c.) excreted slightly less hydroxyproline in their urine than controls. In both intact and thyroparathyroidectomized rats, glucagon (10 μg/100 g/h, s.c.) decreased incorporation of [3H]proline into bone. Similar results were obtained in nephrectomized rats, evidence that changes produced by glucagon were not solely due to alterations in proline pool size caused by increased renal excretion. From these data it is concluded that: (1) glucagon can inhibit bone resorption (the effect being slight in normal rats, but easily demonstrable in parathyroid hormone-treated thyroparathyroidectomized rats), (2) release of endogenous calcitonin is not required to produce this effect, (3) parathyroid hormone and glucagon may act on the same target cell in bone, (4) inhibition of skeletal resorption may contribute to glucagon-induced hypocalcaemia, and (5) the hormone possibly decreases bone formation. Since pharmacological doses of glucagon were used in our studies, the relationship of the observations made to the physiological role of glucagon is unknown.