Search Results

You are looking at 41 - 50 of 259 items for :

  • "leptin receptor" x
Clear All
Free access

Elaine de Oliveira, Egberto G Moura, Ana Paula Santos-Silva, Cíntia R Pinheiro, Natalia S Lima, José Firmino Nogueira-Neto, Andre L Nunes-Freitas, Yael Abreu-Villaça, Magna C F Passos and Patrícia C Lisboa

sensitivity in peripheral tissues ( Matsuzawa 2006 ). Leptin, mainly produced by adipose tissue, reduces food intake and increases energetic expenditure ( Friedman & Halaas 1998 ), by signaling through the leptin receptor (OB-R or LEPR listed in the MGI

Free access

J L Nobre, P C Lisboa, A P Santos-Silva, N S Lima, A C Manhães, J F Nogueira-Neto, A Cabanelas, C C Pazos-Moura, E G Moura and E de Oliveira

Bradford method. Western blotting analysis for hypothalamic leptin receptor and adrenal tyrosine hydroxylase Hypothalamus was isolated using the coordinates established by the Atlas of Neuroanatomy: with Systems Organization and Case Correlations ( Warner

Free access

F Aréchiga-Ceballos, E Alvarez-Salas, G Matamoros-Trejo, M I Amaya, C García-Luna and P de Gortari

-related protein and leptin receptor isoforms in hypothalamic programming by perinatal feeding in the rat . Diabetologia 48 140 – 148 . ( doi:10.1007/s00125-004-1596-z ) Lopez M Tovar S Vazquez MJ Nogueiras R Seoane LM Garcia M Senaris RM Dieguez

Free access

C Fernandez-Galaz, T Fernandez-Agullo, F Campoy, C Arribas, N Gallardo, A Andres, M Ros and JM Carrascosa

Leptin interacts with specific receptors in hypothalamic nuclei and modulates energy balance. Growing evidence has shown the association of obesity and hyperleptinaemia with non-insulin-dependent diabetes mellitus and insulin resistance. The aged Wistar rat shows peripheral insulin resistance in the absence of obesity and alterations of glucose homeostasis. However, it is not known whether, in these animals, the leptin action is altered. Here we studied the effect of ageing on plasma leptin concentration and the ability of hypothalamic nuclei to capture i.c.v.-injected digoxigenin-labelled leptin. Our data indicate that 24-month-old animals are hyperleptinaemic. However, daily food intake was greater in old animals, suggesting that they are leptin resistant. Leptin uptake in the hypothalamus was reduced in old rats. This uptake was a receptor-mediated process as demonstrated by displacement. Leptin accumulation in hypothalamic nuclei was partially colocalized with neuropeptide Y fibres. Immunohistochemical and western blot analyses showed a lower amount of the long form of leptin receptors in the hypothalamus of aged rats. Analysis by RT-PCR also demonstrated a decreased expression of leptin receptor mRNA in old animals. We conclude that the lower leptin uptake may be explained, at least in part, by a decreased amount of receptors in hypothalamic neurones of the aged rats.

Free access

C Nilsson, D Swolin-Eide, C Ohlsson, E Eriksson, HP Ho, P Bjorntorp and A Holmang

Leptin is involved in regulating food intake, energy balance and bone formation. Increasing evidence suggests that leptin is also involved in fetal growth and development. The aim of this study was to determine if increased maternal leptin is followed by changes in body composition, skeletal growth or hormonal regulation in the adult rat offspring. Pregnant rats were given injections of either human recombinant leptin (3.5 mg/kg, i.p.) or vehicle on days 8, 10 and 12 of gestation. Both genders of leptin-exposed offspring showed significantly reduced adipose tIssue weight at adult age. Skeletal growth and cortical bone dimensions were significantly reduced. Circulating testosterone levels were significantly increased in female leptin-exposed offspring, and male leptin-exposed offspring had significant testicular enlargement. No significant effects were seen on circulating leptin levels or hypothalamic protein levels of the leptin receptor. The results demonstrate that maternally administered leptin is involved in fetal growth and development, leading to lean offspring with reduced skeletal growth.

Free access

J Cornish, KE Callon, U Bava, C Lin, D Naot, BL Hill, AB Grey, N Broom, DE Myers, GC Nicholson and IR Reid

Fat mass is an important determinant of bone density, but the mechanism of this relationship is uncertain. Leptin, as a circulating peptide of adipocyte origin, is a potential contributor to this relationship. Recently it was shown that intracerebroventricular administration of leptin is associated with bone loss, suggesting that obesity should be associated with low bone mass, the opposite of what is actually found. Since leptin originates in the periphery, an examination of its direct effects on bone is necessary to address this major discrepancy. Leptin (>10(-11) m) increased proliferation of isolated fetal rat osteoblasts comparably with IGF-I, and these cells expressed the signalling form of the leptin receptor. In mouse bone marrow cultures, leptin (>or=10(-11) m) inhibited osteoclastogenesis, but it had no effect on bone resorption in two assays of mature osteoclasts. Systemic administration of leptin to adult male mice (20 injections of 43 micro g/day over 4 weeks) reduced bone fragility (increased work to fracture by 27% and displacement to fracture by 21%, P<0.001). Changes in tibial histomorphometry were not statistically significant apart from an increase in growth plate thickness in animals receiving leptin. Leptin stimulated proliferation of isolated chondrocytes, and these cells also expressed the signalling form of the leptin receptor. It is concluded that the direct bone effects of leptin tend to reduce bone fragility and could contribute to the high bone mass and low fracture rates of obesity. When administered systemically, the direct actions of leptin outweigh its centrally mediated effects on bone, the latter possibly being mediated by leptin's regulation of insulin sensitivity.

Free access

L Thomas, JM Wallace, RP Aitken, JG Mercer, P Trayhurn and N Hoggard

This study examined the pattern of circulating leptin in age-matched sheep during adolescent pregnancy, and its relationship with maternal dietary intake, body composition and tissue expression of the leptin gene. Overfeeding the adolescent pregnant ewe results in rapid maternal growth at the expense of the placenta, leading to growth restriction in the fetus, compared with normal fed controls. Our results demonstrate that, in the adolescent ewe, overfeeding throughout pregnancy was associated with higher maternal leptin concentrations, when compared with moderately fed controls (P<0.05), with no peak in circulating leptin towards the end of pregnancy. There was a close correlation between indices of body composition and circulating leptin levels at day 104 of gestation and at term (P<0.03). Further, when the dietary intake was switched from moderate to high, or high to moderate, at day 50 of gestation, circulating leptin levels changed rapidly, in parallel with the changes in dietary intake. Leptin mRNA levels and leptin protein in perirenal adipose tissue samples, taken at day 128 of gestation, were higher in overfed dams (P<0.04), suggesting that adipose tissue was the source of the increase in circulating leptin in the overnourished ewes. Leptin protein was also detected in placenta but leptin gene expression was negligible. However, leptin receptor gene expression was detected in the ovine placenta, suggesting that the placenta is a target organ for leptin. A negative association existed between maternal circulating leptin and fetal birth weight, placental/cotyledon weight and cotyledon number. In conclusion, in this particular ovine model, hyperleptinaemia was not observed during late pregnancy. Instead, circulating leptin concentrations reflected increased levels of leptin secretion by adipose tissue primarily as a result of the increase in body fat deposition, due to overfeeding. However, there appears to be a direct effect of overfeeding, particularly in the short term. In the nutritional switch-over study, circulating leptin concentrations changed within 48 h of the change in dietary intake. The presence of leptin protein and leptin receptor gene expression in the placenta suggests that leptin could be involved in nutrient partitioning during placental and/or fetal development.

Free access

T Murakami, S Otani, T Honjoh, T Doi and K Shima

Leptin, a hormone derived from adipose tissue, regulates energy homeostasis and body weight. In the mouse, serum leptin levels, when measured by radioimmunoassay (RIA), increase by a factor of more than 50 times during pregnancy, compared with those in the non-pregnant state. It is well known that mouse placenta produces the secretory isoform of the leptin receptor, OB-Re. In order to investigate the issue of whether serum leptin levels are actually increased during pregnancy or whether the increased OB-Re concentration plays a role in this phenomenon, serum leptin levels were determined by the immunoprecipitation of leptin using anti-leptin antibody, and were found to be increased only by about ten times during pregnancy. To investigate the influence of OB-Re on leptin measurement by the RIA procedure, serum leptin levels were measured by the RIA after the addition of OB-Re to the serum. The apparent values of leptin levels increased in parallel with the amount of OB-Re added to the serum. Leptin levels, as determined by the RIA, might therefore provide artificially high values when serum levels of the secretory form of OB-R are high, in cases, for example, such as the last period of pregnancy in mice.

Free access

J Wolinski, M Biernat, P Guilloteau, BR Westrom and R Zabielski

Leptin, a hormone produced and secreted by adipose tIssue, muscles and stomach, is involved in the regulation of adipose tIssue mass, food intake and body weight in neonatal animals. It is also produced in the mammary glands and secreted into the colostrum and milk. Since leptin receptors are widely distributed in the small intestine mucosa, the aim of the present study was to investigate the effect of exogenous leptin on the development of the small intestine in neonatal piglets. Male neonatal piglets were fed with sow's milk or artificial milk formula. Every 8 h the latter received either vehicle or leptin (2 or 10 microg/kg body weight). The animals were either killed after 6 days of treatment and the small intestine sampled for histology and brush border enzyme activities or were tested for marker molecule (Na-fluorescein and BSA) absorption in vivo. Feeding milk formula slowed the maturation of small intestinal mucosa compared with feeding sow's milk. However, after leptin treatment the length of the small intestine was increased, and intestinal villi length, but not crypt size, was reduced compared with controls. The mitotic index was increased and the percentage of vacuolated enterocytes was reduced in the entire small intestine. Enterocyte brush border protease and lactase activities were reduced in the jejunum. Na-fluorescein marker molecule absorption did not change but that of BSA was reduced 3.8-fold. In conclusion, exogenous leptin administered in physiological doses reversed the maturation of the small intestinal mucosa to the range found in sow-reared piglets.

Free access

ZA Archer, PA Findlay, SR McMillen, SM Rhind and CL Adam

Sheep exhibit photoperiod-driven seasonal changes in appetite and body weight so that nutritional status increases in long days (LD) and decreases in short days (SD); additionally, they are reproductively active in SD and inactive in LD. We addressed the hypothesis that appetite-regulatory genes in the hypothalamus respond differently to changes in nutritional feedback induced by photoperiod as opposed to food restriction, and that responses would be influenced by gonadal steroid status. Castrated oestradiol-implanted male sheep were kept in SD (8 h light/day) or LD (16 h light/day) for 11 weeks, with ad libitum or restricted food (experiment 1; n=8/group). Rams were kept in SD or LD for 12 weeks with ad libitum or restricted food (experiment 2; n=6/group). Gene expression (by in situ hybridisation) in the hypothalamic arcuate nucleus for leptin receptor (OB-Rb), neuropeptide Y (NPY), pro-opiomelanocortin (POMC) and agouti-related peptide (AGRP) was unaffected by photoperiod treatment, but food restriction increased NPY and AGRP mRNAs, in experiment 1. In experiment 2, mRNAs for POMC and cocaine- and amphetamine-regulated transcript (CART) were up-regulated and AGRP down-regulated in SD, while food restriction increased OB-Rb mRNA, increased NPY and AGRP mRNAs only in LD and decreased POMC mRNA only in SD. Thus, gene expression responded differently to photoperiod and food restriction, and the melanocortin pathway was up-regulated in SD in reproductively activated rams but not in oestradiol-implanted castrates. These data support the hypothesis that hypothalamic appetite-regulatory pathways respond differently to changes in nutritional feedback induced by photoperiod as opposed to food restriction, with gonadal steroid feedback additionally influencing the responses.