Search Results

You are looking at 61 - 70 of 287 items for :

  • All content x
Clear All
Free access

Jung-Hoon Kang, Seo-Yoon Chang, Hyun-Jong Jang, Dong-Bin Kim, Gyeong Ryul Ryu, Seung Hyun Ko, In-Kyung Jeong, Yang-Hyeok Jo, and Myung-Jun Kim

or reduce iNOS expression may be necessary for the prevention or inhibition of β-cell damage. Glucagon-like peptide-1 (GLP-1) and its potent agonist exendin-4 (EX-4) have received great attention because of their insulinotropic and β

Free access

Srilaxmi Kalavalapalli, Fernando Bril, Joy Guingab, Ariana Vergara, Timothy J Garrett, Nishanth E Sunny, and Kenneth Cusi

under investigation for NASH, glucagon-like peptide-1 receptor agonists (GLP-1RAs) have shown a significant promise for the treatment of NAFLD ( Ding et al. 2006 , Blonde & Russell-Jones 2009 , Cusi 2012 , Armstrong et al. 2013 , 2016 a , b

Free access

BD Green, MH Mooney, VA Gault, N Irwin, CJ Bailey, P Harriott, B Greer, FP O'Harte, and PR Flatt

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC(50) values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC(50) 0.37 nM). Similarly, both analogues stimulated cAMP production with EC(50) values of 16.3 and 27 nM respectively compared with GLP-1 (EC(50) 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P<0.05 to P<0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes.

Restricted access

Hamzeh Karimkhanloo, Stacey N Keenan, Emily W Sun, David A Wattchow, Damien J Keating, Magdalene K Montgomery, and Matthew J Watt

insulin injection. In separate experiments, the GLP1 receptor antagonist Exendin (9–39) amide (Abcam) was administered to mice (i.p. 4 µg/g body weight) in the presence or absence of CTSS (i.p. 1.0 mg/kg body weight), and a GTT was performed as described

Free access

Li Zhao, Chunfang Zhu, Meng Lu, Chi Chen, Xiaomin Nie, Buatikamu Abudukerimu, Kun Zhang, Zhiyuan Ning, Yi Chen, Jing Cheng, Fangzhen Xia, Ningjian Wang, Michael D Jensen, and Yingli Lu

. 2010 ). Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted by gastrointestinal L cells in response to oral nutrient ingestion ( Wan et al . 2017 ) and is an ideal therapy for obesity and T2DM ( Rajeev & Wilding 2016 ). However, native

Free access

Adrian Holliday and Andrew Blannin

–tyrosine (PYY) and glucagon-like peptide 1 (GLP-1) have been observed with continuous, high-intensity aerobic bouts of exercise lasting as little as 30 min ( Ueda et al . 2009 a ), and with intermittent exercise bouts yielding energy expenditure values of as

Free access

Tianru Jin

cDNAs from these species further revealed that it encodes not only glucagon but also two glucagon-like peptide hormones, namely glucagon-like peptide-1 (GLP-1) and GLP-2 ( Lund et al . 1982 ). Glucagon is produced and released from the pancreatic α

Free access

Sandra Steensels, Matthias Lannoo, Bert Avau, Jorien Laermans, Laurien Vancleef, Ricard Farré, Kristin Verbeke, and Inge Depoortere

considered as one of the possible mechanisms for the postsurgical metabolic improvements ( Svane et al. 2015 ). RYGB surgery enhances the secretion of the anorexigenic hormones glucagon-like peptide 1 (GLP1) and peptide YY (PYY), and although more

Free access

Ashley I Taylor, Nigel Irwin, Aine M McKillop, Steven Patterson, Peter R Flatt, and Victor A Gault

has examined the plasma stability and satiety effects of xenin, and further characterised the glucose-lowering and insulinotropic effects of xenin both alongside GIP, glucagon-like peptide-1 (GLP1) and neurotensin. Materials and Methods Degradation of

Free access

Shou-Si Lu, Yun-Li Yu, Hao-Jie Zhu, Xiao-Dong Liu, Li Liu, Yao-Wu Liu, Ping Wang, Lin Xie, and Guang-Ji Wang

play is an important role in the regulation of endocrine pancreatic secretion. The intestinal products of the proglucagon gene, glucagon-like peptide-1 (GLP-1), has been shown to contribute significantly to the overall insulin response to oral glucose