Search Results

You are looking at 81 - 90 of 272 items for :

Clear All
Restricted access

N Dachicourt, P Serradas, D Bailbe, M Kergoat, L Doare and B Portha

The effects of glucagon-like peptide-1(7-36)-amide (GLP-1) on cAMP content and insulin release were studied in islets isolated from diabetic rats (n0-STZ model) which exhibited impaired glucose-induced insulin release. We first examined the possibility of re-activating the insulin response to glucose in the beta-cells of the diabetic rats using GLP-1 in vitro. In static incubation experiments, GLP-1 amplified cAMP accumulation (by 170%) and glucose-induced insulin release (by 140%) in the diabetic islets to the same extent as in control islets. Using a perifusion procedure, GLP-1 amplified the insulin response to 16.7 mM glucose by diabetic islets and generated a clear biphasic pattern of insulin release. The incremental insulin response to glucose in the presence of GLP-1, although lower than corresponding control values (1.56 +/- 0.37 and 4.53 +/- 0.60 pg/min per ng islet DNA in diabetic and control islets respectively), became similar to that of control islets exposed to 16.7 mM glucose alone (1.09 +/- 0.15 pg/min per ng islet DNA). Since in vitro GLP-1 was found to exert positive effects on the glucose competence of the residual beta-cells in the n0-STZ model. we investigated the therapeutic effect of in vivo GLP-1 administration on glucose tolerance and glucose-induced insulin release by n0-STZ rats. An infusion of GLP-1 (10 ng/min per kg; i.v.) in n0-STZ rats enhanced significantly (P < 0.01) basal plasma insulin levels, and, when combined with an i.v. glucose tolerance and insulin secretion test, it was found to improve (P < 0.05) glucose tolerance and the insulinogenic index, as compared with the respective values of these parameters before GLP-1 treatment.

Restricted access

A. Faulkner and H. T. Pollock

ABSTRACT

The effects of i.v. glucagon-like peptide-1-(7–36)amide (GLP-1; 10 μg) on starved sheep given an i.v. glucose load (5 g) were studied. Plasma insulin concentrations rose significantly more after glucose administration in fed than in starved sheep. Giving GLP-1 to starved sheep increased the insulin response to the glucose load. The rise in plasma insulin concentrations in starved sheep given GLP-1 was similar to that observed in fed sheep. Plasma glucose concentrations returned to normal values more quickly in the starved sheep given GLP-1 than in starved sheep not given gut hormone. Plasma concentrations of free fatty acid, urea and α-amino nitrogen decreased more quickly following glucose administration in starved sheep given GLP-1 than in those not given GLP-1. The data suggest a role for GLP-1 in regulating plasma insulin concentrations and hence metabolism in ruminant animals. The possible role of gut hormones in ruminants is discussed.

Journal of Endocrinology (1991) 129, 55–58

Restricted access

J. Oben, L. Morgan, J. Fletcher and V. Marks

ABSTRACT

The effect of gastric inhibitory polypeptide (GIP), glucagon-like peptide-1(7–36) amide, (GLP-1(7–36) amide), glucagon-like peptide-2 (GLP-2), glucagon and insulin on fatty acid synthesis in explants of rat adipose tissue from various sites was investigated. GIP, GLP-1(7–36) amide and insulin stimulated fatty acid synthesis, as determined by measuring the incorporation of [14C]acetate into saponifiable fat, in a dose-dependent manner, over the concentration range 5–15 ng/ml (0·87–2·61 nmol/l) for insulin and 0·5–7·5 ng/ml for GIP (0·10–1·50 nmol/l) and GLP-1(7–36) amide (0·15–2·27 nmol/l). Insulin and GIP caused a significantly greater stimulation of [14C]acetate incorporation into fatty acids in omental adipose tissue than in either epididymal or subcutaneous adipose tissue. Both GIP and GLP-1(7–36) amide had the ability to stimulate fatty acid synthesis within the physiological range of the circulating hormones. At lower concentrations of the hormones, GLP-1(7–36) amide was a more potent stimulator of fatty acid synthesis than GIP in omental adipose tissue culture; the basal rate of fatty acid synthesis was 0·41±0·03 pmol acetate incorporated/mg wet weight tissue per 2 h; at 0·10 nmol hormone/l 1·15±0·10 and 3·40±0·12 pmol acetate incorporated/mg wet weight tissue per 2 h for GIP and GLP-1(7–36) amide respectively (P < 0·01). GLP-2 and glucagon were without effect on fatty acid synthesis in omental adipose tissue. The study indicates that GIP and GLP-1(7–36) amide, in addition to stimulating insulin secretion, may play a direct physiological role in vivo, in common with insulin, in promoting fatty acid synthesis in adipose tissue.

Journal of Endocrinology (1991) 130, 267–272

Free access

Peixin Li, Zhijian Rao, Brenton Thomas Laing, Wyatt Bunner, Taylor Landry, Amber Prete, Yuan Yuan, Zhong-Tao Zhang and Hu Huang

play a direct role after VSG. Furthermore, recent clinical studies in humans have shown that improved glucose homeostasis and even diabetes remission may be related to increased nutrient-stimulated glucagon-like peptide (GLP)-1 and peptide YY (PYY

Free access

S Saifia, AM Chevrier, A Bosshard, JC Cuber, JA Chayvialle and J Abello

The neuropeptide galanin is widely distributed in the gastrointestinal tract and exerts several inhibitory effects, especially on intestinal motility and on insulin release from pancreatic beta-cells. The presence of galanin fibres not only in the myenteric and submucosal plexus but also in the mucosa, prompted us to investigate the regulatory role of galanin, and its mechanism of action, on the secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1). Rat ileal cells were dispersed through mechanical vibration followed by moderate exposure to hyaluronidase, DNase I and EDTA, and enriched for L-cells by counterflow elutriation. A 6- to 7-fold enrichment in GLP-1 cell content was registered after elutriation, as compared with the crude cell preparation (929 +/- 81 vs 138 +/- 14 fmol/10(6) cells). L-cells then accounted for 4-5% of the total cell population. Bombesin induced a time-(15-240 min) and dose- (0.1 nM-1 microM) dependent release of GLP-1. Glucose-dependent insulinotropic peptide (GIP, 100 nM), forskolin (10 microM) and the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA, 1 microM) each stimulated GLP-1 secretion over a 1-h incubation period. Galanin (0.01-100 nM) induced a dose-dependent inhibition of bombesin- and of GIP-stimulated GLP-1 release (mean inhibition of 90% with 100 nM galanin). Galanin also dose-dependently inhibited forskolin-induced GLP-1 secretion (74% of inhibition with 100 nM galanin), but not TPA-stimulated hormone release. Pretreatment of cells with 200 ng/ml pertussis toxin for 3 h, or incubation with the ATP-sensitive K+ channel blocker disopyramide (200 microM), prevented the inhibition by galanin of bombesin- and GIP-stimulated GLP-1 secretion. These studies indicate that intestinal secretion of GLP-1 is negatively controlled by galanin, that acts through receptors coupled to pertussis toxin-sensitive G protein and involves ATP-dependent K+ channels.

Free access

CF Deacon, S Wamberg, P Bie, TE Hughes and JJ Holst

The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are degraded by dipeptidyl peptidase IV (DPP IV), thereby losing insulinotropic activity. DPP IV inhibition reduces exogenous GLP-1 degradation, but the extent of endogenous incretin protection has not been fully assessed, largely because suitable assays which distinguish between intact and degraded peptides have been unavailable. Using newly developed assays for intact GLP-1 and GIP, the effect of DPP IV inhibition on incretin hormone metabolism was examined. Conscious dogs were given NVP-DPP728, a specific DPP IV inhibitor, at a dose that inhibited over 90% of plasma DPP IV for the first 90 min following treatment. Total and intact incretin concentrations increased (P<0.0001) following a mixed meal, but on control days (vehicle infusion), intact peptide concentrations were lower (P<0.01) than total peptide concentrations (22.6 +/- 1.2% intact GIP; 10.1 +/- 0.4% intact GLP-1). Following inhibitor treatment, the proportion of intact peptide increased (92.5 +/- 4.3% intact GIP, P<0.0001; 99.0 +/- 22.6% intact GLP-1, P<0.02). Active (intact) incretins increased after NVP-DPP728 (from 4797 +/- 364 to 10 649 +/- 106 pM x min for GIP, P<0.03; from 646 +/- 134 to 2822 +/- 528 pM x m in for GLP-1, P<0.05). In contrast, total incretins fell (from 21 632 +/- 654 to 12 084 +/- 1723 pM x min for GIP, P<0.002; from 5145 +/- 677 to 3060 +/- 601 pM x min for GLP-1, P<0.05). Plasma glucose, insulin and glucagon concentrations were unaltered by the inhibitor. We have concluded that DPP IV inhibition with NVP-DPP728 prevents N-terminal degradation of endogenous incretins in vivo, resulting in increased plasma concentrations of intact, biologically active GIP and GLP-1. Total incretin secretion was reduced by DPP IV inhibition, suggesting the possibility of a feedback mechanism.

Restricted access

P A Martin and A Faulkner

Abstract

The effects of intravenous somatostatin-28 (S28) infusion on glucose-stimulated and glucagon-like peptide-1(7–36)amide (GLP-1)-augmented insulin secretion were studied in sheep. S28 was infused via a jugular catheter for 15 min at a rate of 1·1 pmol/kg/min either alone or together with GLP-1 and/or glucose. S28 infusion did not significantly lower circulating basal insulin concentrations in fed sheep. Glucose-stimulated insulin secretion was significantly inhibited by S28 infusion, serum concentrations decreasing from about 200 to 150 pmol/l. GLP-1 significantly augmented glucose-stimulated insulin secretion, serum concentrations increasing from about 230 to 280 pmol/l. S28 completely counteracted this effect of GLP-1. S28 infusion also significantly decreased the circulating concentrations of glucose-dependent insulinotrophic polypeptide (GIP) and GLP-1 in fed sheep (from about 110 to 45 pmol/l for GIP and from about 25 to 15 pmol/l for GLP-1). The physiological implications of these observations are discussed with particular reference to the ruminant. It is concluded that S28 may have an important endocrine role in the control of insulin secretion and regulation of nutrient partitioning.

Journal of Endocrinology (1996) 151, 107–112

Restricted access

R. Göke and J. M. Conlon

ABSTRACT

Specific binding of 125I-labelled glucagon-like peptide-1(7–36)amide (GLP-1(7–36)amide) to rat insulinoma-derived RINm5F cells was dependent upon time and temperature and was proportional to cell concentration. Binding of radioactivity was inhibited in a concentration-dependent manner by GLP-1(7–36) amide consistent with the presence of a single class of binding site with a dissociation constant (K d) of 204± 8 pmol/l (mean ± s.e.m.). Binding of the peptide resulted in a dose-dependent increase in cyclic AMP concentrations (half maximal response at 250 ± 20 pmol/l). GLP-1(1–36)amide was approximately 200 times less potent than GLP-1(7–36)amide in inhibiting the binding of 125I-labelled GLP-1(7–36)amide to the cells (K d of 45±6 nmol/l). Binding sites for GLP-1 (7–36)amide were not present on dispersed enterocytes from porcine small intestine.

J. Endocr. (1988) 116, 357–362

Restricted access

D. J. O'Halloran, G. C. Nikou, B. Kreymann, M. A. Ghatei and S. R. Bloom

ABSTRACT

Glucagon-like peptide (GLP)-1 (7–36)-NH2 is a peptide found in the mucosal endocrine cells of the intestine, and plasma levels of GLP-1 (7–36)-NH2 immunoreactivity show a rise after the ingestion of a fat or mixed-component meal. We investigated the effects of physiological infusion of GLP-1 (7–36)-NH2 on a submaximal gastric acid secretion in healthy volunteers at a rate known to mimic the observed postprandial rise in plasma concentrations. Corrected gastric acid output decreased to less than 50% and volume output to 33% of stimulated values. After the infusion, the secretion of gastric acid recovered immediately to preinhibition values. These results suggest a novel role for GLP-1 (7–36)-NH2 as a physiological inhibitor of gastric acid secretion in man.

Journal of Endocrinology (1990) 126, 169–173

Restricted access

M L Villanueva-Peñacarrillo, E Delgado, M A Trapote, A Alcántara, F Clemente, M A Luque, A Perea and I Valverde

Abstract

We have found [125I]glucagon-like peptide (GLP)-1(7–36)amide specific binding activity in rat liver and isolated hepatocyte plasma membranes, with an Mr of approximately 63 000, estimated by cross-linking and SDS-PAGE. The specific binding was time- and membrane protein concentration-dependent, and equally displaced by unlabelled GLP-1(7–36)amide and by GLP-1(1–36)amide, achieving its ID50 at 3×10−9 m of the peptides. GLP-1(7–36)amide did not modify the basal or the glucagon (10−8 m)-stimulated adenylate cyclase in the hepatocyte plasma membranes. These data, together with our previous findings of a potent glycogenic effect of GLP-1(7–36)amide in isolated rat hepatocytes, led us to postulate that the insulin-like effects of this peptide on glucose liver metabolism could be mediated by a type of receptor probably different from that described for GLP-1 in pancreatic B-cells or, alternatively, by the same receptor which, in this tissue as well as in muscle, uses a different transduction system.

Journal of Endocrinology (1995) 146, 183–189