Search Results
CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
Search for other papers by Aryane Cruz Oliveira Pinho in
Google Scholar
PubMed
CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
Search for other papers by Paula Laranjeira in
Google Scholar
PubMed
CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Casa Costa Alemão, Coimbra, Portugal
APDP-Portuguese Diabetes Association, Lisbon, Portugal
Search for other papers by Eugenia Carvalho in
Google Scholar
PubMed
Despite the known link between obesity and insulin resistance (IR) to chronic low-grade inflammation, new markers capable of early IR detection are needed. Immune cells are components of adipose tissue’s (AT) stromal vascular fraction (SVF) that regulate AT homeostasis. The altered phenotype and function of AT-infiltrating immune cells may contribute to the development and maintenance of local AT inflammation observed under obesity-induced IR conditions. Impaired AT-specific immunometabolic function may influence the whole organism. Therefore, AT-infiltrating immune cells may be important players in the development of obesity-related metabolic complications, such as type 2 diabetes mellitus (T2DM). B and T cells, particularly CD20+ T cells, play important roles in human pathology, such as autoimmune disease and cancer. However, the question remains as to whether CD20+ T cells have an important contribution to the development of obesity-related IR. While circulating CD20+ T cells are mostly of the central memory phenotype (i.e. antigen-experienced T cells with the ability to home to secondary lymphoid organs), tissues-infiltrated CD20+ T cells are predominantly of the effector memory phenotype (i.e. antigen-experienced T cells that preferentially infiltrate peripheral tissues). The latter produce pro-inflammatory cytokines, such as IFN-γ and IL-17, which play a role in obesity-related IR development. This review describes the CD20 molecule and its presence in both B and T cells, shedding light on its ontogeny and function, in health and disease, with emphasis on AT. The link between CD20+ T cell dysregulation, obesity, and IR development supports the role of CD20+ T cells as markers of adipose tissue dysmetabolism.
Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
Banting & Best Diabetes Centre, Toronto, Ontario, Canada
Search for other papers by Margaret K Hahn in
Google Scholar
PubMed
Banting & Best Diabetes Centre, Toronto, Ontario, Canada
Department of Physiology, University of Toronto, Toronto, Ontario, Canada
Search for other papers by Adria Giacca in
Google Scholar
PubMed
Department of Physiology, University of Toronto, Toronto, Ontario, Canada
Search for other papers by Sandra Pereira in
Google Scholar
PubMed
corticotropin releasing factor . Nature Neuroscience 25 1191 – 1200 . ( https://doi.org/10.1038/s41593-022-01146-x ) Glendinning JI Stano S Holter M Azenkot T Goldman O Margolskee RF Vasselli JR & Sclafani A 2015 Sugar-induced cephalic