Search Results
Search for other papers by Antonella Amato in
Google Scholar
PubMed
Search for other papers by Sara Baldassano in
Google Scholar
PubMed
Search for other papers by Flavia Mulè in
Google Scholar
PubMed
Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells and by a discrete population of neurons in the brainstem, which projects mainly to the hypothalamus. The main biological actions of GLP2 are related to the regulation of energy absorption and maintenance of mucosal morphology, function and integrity of the intestine; however, recent experimental data suggest that GLP2 exerts beneficial effects on glucose metabolism, especially in conditions related to increased uptake of energy, such as obesity, at least in the animal model. Indeed, mice lacking GLP2 receptor selectively in hypothalamic neurons that express proopiomelanocortin show impaired postprandial glucose tolerance and hepatic insulin resistance (by increased gluconeogenesis). Moreover, GLP2 acts as a beneficial factor for glucose metabolism in mice with high-fat diet-induced obesity. Thus, the aim of this review is to update and summarize current knowledge about the role of GLP2 in the control of glucose homeostasis and to discuss how this molecule could exert protective effects against the onset of related obesity type 2 diabetes.
Search for other papers by Kerryn M Taylor in
Google Scholar
PubMed
Search for other papers by David W Ray in
Google Scholar
PubMed
Search for other papers by Paula Sommer in
Google Scholar
PubMed
Proper expression of the glucocorticoid receptor (GR) plays an essential role in the development of the lung. GR expression and signalling in the lung is manipulated by administration of synthetic glucocorticoids (Gcs) for the treatment of neonatal, childhood and adult lung diseases. In lung cancers, Gcs are also commonly used as co-treatment during chemotherapy. This review summarises the effect of Gc monotherapy and co-therapy on lung cancers in vitro, in mouse models of lung cancer, in xenograft, ex vivo and in vivo. The disparity between the effects of pre-clinical and in vivo Gc therapy is commented on in light of the recent discovery of GR as a novel tumour suppressor gene.
Key Laboratory of Transplant Engineering and Immunology, Department of Human Anatomy, Ministry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of China
Search for other papers by Bo Chen in
Google Scholar
PubMed
Search for other papers by Yanrong Lu in
Google Scholar
PubMed
Search for other papers by Younan Chen in
Google Scholar
PubMed
Search for other papers by Jingqiu Cheng in
Google Scholar
PubMed
Endothelial dysfunction is an important risk factor for cardiovascular disease, and it represents the initial step in the pathogenesis of atherosclerosis. Failure to protect against oxidative stress-induced cellular damage accounts for endothelial dysfunction in the majority of pathophysiological conditions. Numerous antioxidant pathways are involved in cellular redox homeostasis, among which the nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)–antioxidant response element (ARE) signaling pathway is perhaps the most prominent. Nrf2, a transcription factor with a high sensitivity to oxidative stress, binds to AREs in the nucleus and promotes the transcription of a wide variety of antioxidant genes. Nrf2 is located in the cytoskeleton, adjacent to Keap1. Keap1 acts as an adapter for cullin 3/ring-box 1-mediated ubiquitination and degradation of Nrf2, which decreases the activity of Nrf2 under physiological conditions. Oxidative stress causes Nrf2 to dissociate from Keap1 and to subsequently translocate into the nucleus, which results in its binding to ARE and the transcription of downstream target genes. Experimental evidence has established that Nrf2-driven free radical detoxification pathways are important endogenous homeostatic mechanisms that are associated with vasoprotection in the setting of aging, atherosclerosis, hypertension, ischemia, and cardiovascular diseases. The aim of the present review is to briefly summarize the mechanisms that regulate the Nrf2/Keap1–ARE signaling pathway and the latest advances in understanding how Nrf2 protects against oxidative stress-induced endothelial injuries. Further studies regarding the precise mechanisms by which Nrf2-regulated endothelial protection occurs are necessary for determining whether Nrf2 can serve as a therapeutic target in the treatment of cardiovascular diseases.
Search for other papers by K J Oldknow in
Google Scholar
PubMed
Search for other papers by V E MacRae in
Google Scholar
PubMed
Search for other papers by C Farquharson in
Google Scholar
PubMed
Recent developments in endocrinology, made possible by the combination of mouse genetics, integrative physiology and clinical observations have resulted in rapid and unanticipated advances in the field of skeletal biology. Indeed, the skeleton, classically viewed as a structural scaffold necessary for mobility, and regulator of calcium–phosphorus homoeostasis and maintenance of the haematopoietic niche has now been identified as an important regulator of male fertility and whole-body glucose metabolism, in addition to the classical insulin target tissues. These seminal findings confirm bone to be a true endocrine organ. This review is intended to detail the key events commencing from the elucidation of osteocalcin (OC) in bone metabolism to identification of new and emerging candidates that may regulate energy metabolism independently of OC.
Search for other papers by A Margot Umpleby in
Google Scholar
PubMed
Labelling molecules with stable isotopes to create tracers has become a gold-standard method to study the metabolism of lipids and lipoproteins in humans. There are a range of techniques which use stable isotopes to measure fatty acid flux and oxidation, hepatic fatty synthesis, cholesterol absorption and synthesis and lipoprotein metabolism in humans. Stable isotope tracers are safe to use, enabling repeated studies to be undertaken and allowing studies to be undertaken in children and pregnant women. This review provides details of the most appropriate tracers to use, the techniques which have been developed and validated for measuring different aspects of lipid metabolism and some of the limitations of the methodology.
Cardiovascular Endocrinology, Department of Physiology, MIMR-PHI Institute, 27–31 Wright St, Clayton 3168, Australia
Search for other papers by Morag J Young in
Google Scholar
PubMed
Cardiovascular Endocrinology, Department of Physiology, MIMR-PHI Institute, 27–31 Wright St, Clayton 3168, Australia
Search for other papers by Amanda J Rickard in
Google Scholar
PubMed
The clinical impact of cardiovascular disease cannot be underestimated. Equally, the importance of cost-effective management of cardiac failure is a pressing issue in the face of an ageing population and the increasing incidence of metabolic disorders worldwide. Targeting the mineralocorticoid receptor (MR) offers one approach for the treatment of heart failure with current strategies for novel MR therapeutics focusing on harnessing their cardio-protective benefits, but limiting the side effects of existing agents. It is now well accepted that activation of the MR in the cardiovascular system promotes tissue inflammation and fibrosis and has negative consequences for cardiac function and patient outcomes following cardiac events. Indeed, blockade of the MR using one of the two available antagonists (spironolactone and eplerenone) provides significant cardio-protective effects in the clinical and experimental setting. Although the pathways downstream of MR that translate receptor activation into tissue inflammation, fibrosis and dysfunction are still being elucidated, a series of recent studies using cell-selective MR (NR3C2)-null or MR-overexpressing mice have offered many new insights into the role of MR in cardiovascular disease and the control of blood pressure. Dissecting the cell-specific roles of MR signalling in the heart and vasculature to identify those pathways that are critical for MR-dependent responses is an important step towards achieving cardiac-selective therapeutics. The goal of this review is to discuss recent advances in this area that have emerged from the study of tissue-selective MR-null mice, and other targeted transgenic models and their relevance to clinical disease.
Search for other papers by F Wahab in
Google Scholar
PubMed
Search for other papers by M Shahab in
Google Scholar
PubMed
Search for other papers by R Behr in
Google Scholar
PubMed
Recently, kisspeptin (KP) and gonadotropin inhibitory hormone (GnIH), two counteracting neuropeptides, have been acknowledged as significant regulators of reproductive function. KP stimulates reproduction while GnIH inhibits it. These two neuropeptides seem to be pivotal for the modulation of reproductive activity in response to internal and external cues. It is well-documented that the current metabolic status of the body is closely linked to its reproductive output. However, how reproductive function is regulated by the body's energy status is less clear. Recent studies have suggested an active participation of hypothalamic KP and GnIH in the modulation of reproductive function according to available metabolic cues. Expression of KISS1, the KP encoding gene, is decreased while expression of RFRP (NPVF), the gene encoding GnIH, is increased in metabolic deficiency conditions. The lower levels of KP, as suggested by a decrease in KISS1 gene mRNA expression, during metabolic deficiency can be corrected by administration of exogenous KP, which leads to an increase in reproductive hormone levels. Likewise, administration of RF9, a GnIH receptor antagonist, can reverse the inhibitory effect of fasting on testosterone in monkeys. Together, it is likely that the integrated function of both these hypothalamic neuropeptides works as a reproductive output regulator in response to a change in metabolic status. In this review, we have summarized literature from nonprimate and primate studies that demonstrate the involvement of KP and GnIH in the metabolic regulation of reproduction.
Search for other papers by Vimal Selvaraj in
Google Scholar
PubMed
Search for other papers by Lan N Tu in
Google Scholar
PubMed
The mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), has received significant attention both as a diagnostic biomarker and as a therapeutic target for different neuronal disease pathologies. Recently, its functional basis believed to be mediating mitochondrial cholesterol import for steroid hormone production has been refuted by studies examining both in vivo and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental gap in the understanding of TSPO function in the nervous system, and its putative pharmacology in neurosteroid production. In this review, we discuss several recent findings in steroidogenic cells that are in direct contradiction to previous studies, and necessitate a re-examination of the purported role for TSPO in de novo neurosteroid biosynthesis. We critically examine the pharmacological effects of different TSPO-binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the true potential of this therapeutic target in medicine may be realized.
Search for other papers by Alex Rafacho in
Google Scholar
PubMed
Search for other papers by Henrik Ortsäter in
Google Scholar
PubMed
Search for other papers by Angel Nadal in
Google Scholar
PubMed
Search for other papers by Ivan Quesada in
Google Scholar
PubMed
Glucocorticoids (GCs) are broadly prescribed for numerous pathological conditions because of their anti-inflammatory, antiallergic and immunosuppressive effects, among other actions. Nevertheless, GCs can produce undesired diabetogenic side effects through interactions with the regulation of glucose homeostasis. Under conditions of excess and/or long-term treatment, GCs can induce peripheral insulin resistance (IR) by impairing insulin signalling, which results in reduced glucose disposal and augmented endogenous glucose production. In addition, GCs can promote abdominal obesity, elevate plasma fatty acids and triglycerides, and suppress osteocalcin synthesis in bone tissue. In response to GC-induced peripheral IR and in an attempt to maintain normoglycaemia, pancreatic β-cells undergo several morphofunctional adaptations that result in hyperinsulinaemia. Failure of β-cells to compensate for this situation favours glucose homeostasis disruption, which can result in hyperglycaemia, particularly in susceptible individuals. GC treatment does not only alter pancreatic β-cell function but also affect them by their actions that can lead to hyperglucagonaemia, further contributing to glucose homeostasis imbalance and hyperglycaemia. In addition, the release of other islet hormones, such as somatostatin, amylin and ghrelin, is also affected by GC administration. These undesired GC actions merit further consideration for the design of improved GC therapies without diabetogenic effects. In summary, in this review, we consider the implication of GC treatment on peripheral IR, islet function and glucose homeostasis.
INSERM, University Paris Descartes, Assistance Publique-Hôpitaux de Paris, UMRS_970, Paris Cardiovascular Research Center – PARCC, 56, rue Leblanc, 75015 Paris, France
INSERM, University Paris Descartes, Assistance Publique-Hôpitaux de Paris, UMRS_970, Paris Cardiovascular Research Center – PARCC, 56, rue Leblanc, 75015 Paris, France
Search for other papers by Maria-Christina Zennaro in
Google Scholar
PubMed
INSERM, University Paris Descartes, Assistance Publique-Hôpitaux de Paris, UMRS_970, Paris Cardiovascular Research Center – PARCC, 56, rue Leblanc, 75015 Paris, France
Search for other papers by Sheerazed Boulkroun in
Google Scholar
PubMed
INSERM, University Paris Descartes, Assistance Publique-Hôpitaux de Paris, UMRS_970, Paris Cardiovascular Research Center – PARCC, 56, rue Leblanc, 75015 Paris, France
INSERM, University Paris Descartes, Assistance Publique-Hôpitaux de Paris, UMRS_970, Paris Cardiovascular Research Center – PARCC, 56, rue Leblanc, 75015 Paris, France
Search for other papers by Fabio Fernandes-Rosa in
Google Scholar
PubMed
Primary aldosteronism (PA) is the most common and curable form of secondary hypertension. It is caused in the majority of cases by either unilateral aldosterone overproduction due to an aldosterone-producing adenoma (APA) or by bilateral adrenal hyperplasia. Recent advances in genome technology have allowed researchers to unravel part of the genetic abnormalities underlying the development of APA and familial hyperaldosteronism. Recurrent somatic mutations in genes coding for ion channels (KCNJ5 and CACNA1D) and ATPases (ATP1A1 and ATP2B3) regulating intracellular ionic homeostasis and cell membrane potential have been identified in APA. Similar germline mutations of KCNJ5 were identified in a severe familial form of PA, familial hyperaldosteronism type 3 (FH3), whereas de novo germline CACNA1D mutations were found in two cases of hyperaldosteronism associated with a complex neurological disorder. These results have allowed a pathophysiological model of APA development to be established. This model involves modifications in intracellular ionic homeostasis and membrane potential, accounting for ∼50% of all tumors, associated with specific gender differences and severity of PA. In this review, we describe the different genetic abnormalities associated with PA and discuss the mechanisms whereby they lead to increased aldosterone production and cell proliferation. We also address some of the foreseeable consequences that genetic knowledge may contribute to improve diagnosis and patient care.