Search Results

You are looking at 1 - 5 of 5 items for :

  • "extracellular cAMP" x
  • Refine by access: All content x
Clear All
Sihan Lv Department of Endocrinology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China

Search for other papers by Sihan Lv in
Google Scholar
PubMed
Close
,
Xinchen Qiu Department of Endocrinology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China

Search for other papers by Xinchen Qiu in
Google Scholar
PubMed
Close
,
Jian Li Department of Endocrinology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China

Search for other papers by Jian Li in
Google Scholar
PubMed
Close
,
Jinye Liang Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China

Search for other papers by Jinye Liang in
Google Scholar
PubMed
Close
,
Weida Li Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China

Search for other papers by Weida Li in
Google Scholar
PubMed
Close
,
Chao Zhang Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China

Search for other papers by Chao Zhang in
Google Scholar
PubMed
Close
,
Zhen-Ning Zhang Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China

Search for other papers by Zhen-Ning Zhang in
Google Scholar
PubMed
Close
, and
Bing Luan Department of Endocrinology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China

Search for other papers by Bing Luan in
Google Scholar
PubMed
Close

. 1971 b , Godinho et al . 2015 ). Extracellular cAMP mediates glucagon actions such as endocrine inhibition of sodium and phosphate reabsorption in the renal proximal tubule ( Ahloulay et al . 1996 ). Liver-borne extracellular cAMP is also able to

Free access
Marie Saint-Dizier Unité de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université F. Rabelais de Tours-Haras Nationaux, 37 380 Nouzilly, France.

Search for other papers by Marie Saint-Dizier in
Google Scholar
PubMed
Close
,
Florence Foulon-Gauze Unité de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université F. Rabelais de Tours-Haras Nationaux, 37 380 Nouzilly, France.

Search for other papers by Florence Foulon-Gauze in
Google Scholar
PubMed
Close
,
François Lecompte Unité de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université F. Rabelais de Tours-Haras Nationaux, 37 380 Nouzilly, France.

Search for other papers by François Lecompte in
Google Scholar
PubMed
Close
,
Yves Combarnous Unité de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université F. Rabelais de Tours-Haras Nationaux, 37 380 Nouzilly, France.

Search for other papers by Yves Combarnous in
Google Scholar
PubMed
Close
, and
Maryse Chopineau Unité de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université F. Rabelais de Tours-Haras Nationaux, 37 380 Nouzilly, France.

Search for other papers by Maryse Chopineau in
Google Scholar
PubMed
Close

Pituitary equine luteinizing hormone (eLH) and fetal chorionic gonadotrophin (eCG) have identical polypeptidic chains, but different linked carbohydrates. In equine tissues, eCG and eLH bind only to the LH/CG receptor (eLH/CG-R) and have no FSH activity. However, radio-receptor assays on equine luteal or testicular tissues have shown that eCG binds to the eLH/CG-R with only 2–4% of the binding activity of eLH. In order to study the structure–function relationship of eLH and eCG in a homologous sytem, we undertook the cloning and functional expression of the eLH/CG-R.

Based on sequence homologies among mammalian sequences for the LH/CG-R, overlapping partial fragments of LH/CG-R cDNAs were obtained from mare luteal RNA using reverse transcription-PCR and 5′-rapid amplification of cDNA ends. Ligations of the partial cDNA fragments encoded a part of the signal peptide followed by a putative 672 amino acid eLH/CG-R mature protein. The mature eLH/CG-R displayed 88.2–92.8% overall sequence homology with the other mammalian LH/CG-Rs and contained one unique seventh N-glycosylation site in its extracellular domain.

COS-7 cells were transiently transfected with a cDNA construct encoding an engineered complete signal peptide and the mature eLH/CG-R. Membrane preparations from transfected COS-7 cells bound 125I-eLH with high affinity (K d 3.8 × 10−10 M). On a molar basis, eCG competed with 125I-eLH on membrane preparations with only 12.4% of the eLH binding activity. In transfected COS-7, both eLH and eCG increased the extracellular cAMP concentration in a dose-dependent manner, whereas eFSH did not. Furthermore, on a molar basis, eCG stimulated cAMP production with only 13.9% of the eLH stimulating activity.

We conclude that the cloned cDNA encodes a The differences functional eLH/CG-R. between eLH and eCG activities towards this receptor will be useful in studies of the influence of carbohydrates on gonadotrophin receptor binding and activation.

Free access
S. Xiao
Search for other papers by S. Xiao in
Google Scholar
PubMed
Close
and
J. K. Findlay
Search for other papers by J. K. Findlay in
Google Scholar
PubMed
Close

ABSTRACT

The effects of recombinant rat interferon-γ (rRaIFN-γ) and rat IFN (RaIFN, a mixture of IFN-γ and -α) on basal and FSH-induced ovarian granulosa cell function were studied. Granulosa cells were harvested from diethylstilboestrol-treated immature rats and cultured (2 × 105 viable cells/well per 0·5 ml) in serumfree medium with or without treatment for 48 h. In the presence of FSH (20 ng/ml), rRaIFN-γ (10–1000 U/ml) significantly inhibited FSH-stimulated aromatase activity (76·4 ± 2·3% maximum inhibition compared with FSH treatment alone), inhibin (40·4 ± 3·7%), progesterone (47·7 ± 8·6%) and 20α-hydroxypregn-4-en-3-one (20α-OHP) (51·8±1·7%) production in a dose-dependent manner. Furthermore, rRaIFN-γ inhibited FSH- and forskolin (FSK; 30 μmol/l)-induced extracellular cAMP accumulation (46·0 ± 6·6% and 29·1 ± 7·3% respectively). The inhibitory effect of rRaIFN-γ on FSK-induced cAMP was accompanied by decreased FSK-induced aromatase activity, inhibin, progesterone and 20α-OHP production. rRaIFN-γ had no detectable effect on aromatase activity, progesterone production and 20α-OHP production in the absence of FSH, but significantly stimulated basal inhibin production by 1·5-fold. rRaIFN-γ alone also caused a small but significant increase in basal levels of cAMP. The timecourse studies showed that FSH-induced aromatase activity and inhibin production were consistently suppressed by rRaIFN-γ, FSH-induced progesterone and 20α-OHP were inhibited at 1 and 2 days and then stimulated on days 3, 4 and 5 relative to FSH alone. There was no difference in DNA content between treatment and non-treatment wells during 5 days of culture. RaIFN had similar effects to rRaIFN-γ. We conclude that IFN-γ can inhibit FSH-induced granulosa cell differentiation and that, in the absence of FSH, IFN-γ stimulated undifferentiated granulosa cells to produce more inhibin. The mechanism of its action is likely to involve changes in cAMP production.

Journal of Endocrinology (1992) 133, 131–139

Restricted access
Tomoko Miyoshi
Search for other papers by Tomoko Miyoshi in
Google Scholar
PubMed
Close
,
Fumio Otsuka
Search for other papers by Fumio Otsuka in
Google Scholar
PubMed
Close
,
Hiroyuki Otani
Search for other papers by Hiroyuki Otani in
Google Scholar
PubMed
Close
,
Kenichi Inagaki
Search for other papers by Kenichi Inagaki in
Google Scholar
PubMed
Close
,
Junko Goto
Search for other papers by Junko Goto in
Google Scholar
PubMed
Close
,
Misuzu Yamashita
Search for other papers by Misuzu Yamashita in
Google Scholar
PubMed
Close
,
Toshio Ogura
Search for other papers by Toshio Ogura in
Google Scholar
PubMed
Close
,
Yasumasa Iwasaki Department of Medicine and Clinical Science, Department of Endocrinology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City 700-8558, Japan

Search for other papers by Yasumasa Iwasaki in
Google Scholar
PubMed
Close
, and
Hirofumi Makino
Search for other papers by Hirofumi Makino in
Google Scholar
PubMed
Close

). After 24-h treatment, extracellular cAMP levels in the culture medium containing 0.1 mM IBMX were determined by enzyme immunoassay. Results are shown as mean± s.e.m. of data from at least three separate experiments, each performed with triplicate

Free access
Y Kamei Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by Y Kamei in
Google Scholar
PubMed
Close
,
Y Aoyama Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by Y Aoyama in
Google Scholar
PubMed
Close
,
T Fujimoto Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by T Fujimoto in
Google Scholar
PubMed
Close
,
N Kenmotsu Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by N Kenmotsu in
Google Scholar
PubMed
Close
,
C Kishi Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by C Kishi in
Google Scholar
PubMed
Close
,
M Koushi Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by M Koushi in
Google Scholar
PubMed
Close
,
S Sugano Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by S Sugano in
Google Scholar
PubMed
Close
,
K Morohashi Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by K Morohashi in
Google Scholar
PubMed
Close
,
R Kamiyama Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by R Kamiyama in
Google Scholar
PubMed
Close
, and
R Asakai Graduate School of Allied Health Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Department of Endocrinology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyouku, Tokyo, Japan
Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minatoku, Tokyo, Japan
Division for Sex Differentiation, National Institute for Basic Biology, National Institutes of Natural Sciences, Higashiyama 5-1, Myondaiji-cho, Okazaki, Japan

Search for other papers by R Asakai in
Google Scholar
PubMed
Close

presence of 1 mM 1,3-dimethylxanthine, a cyclic nucleotide phosphodiesterase inhibitor. After collecting culture medium for measurement of extracellular cAMP, cells were treated with 5% trichloroacetic acid and boiled for 5 min, for determination of the

Free access