Search Results
Centre de Recherche de l’Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste-Foy, Québec, Canada G1V 4G5
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht,
Movement Sciences, Maastricht University, Maastricht, 6200 The Netherlands
Search for other papers by Sabina Paglialunga in
Google Scholar
PubMed
Centre de Recherche de l’Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste-Foy, Québec, Canada G1V 4G5
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht,
Movement Sciences, Maastricht University, Maastricht, 6200 The Netherlands
Search for other papers by Patrick Schrauwen in
Google Scholar
PubMed
Centre de Recherche de l’Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste-Foy, Québec, Canada G1V 4G5
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht,
Movement Sciences, Maastricht University, Maastricht, 6200 The Netherlands
Search for other papers by Christian Roy in
Google Scholar
PubMed
Centre de Recherche de l’Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste-Foy, Québec, Canada G1V 4G5
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht,
Movement Sciences, Maastricht University, Maastricht, 6200 The Netherlands
Search for other papers by Esther Moonen-Kornips in
Google Scholar
PubMed
Centre de Recherche de l’Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste-Foy, Québec, Canada G1V 4G5
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht,
Movement Sciences, Maastricht University, Maastricht, 6200 The Netherlands
Search for other papers by Huiling Lu in
Google Scholar
PubMed
Centre de Recherche de l’Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste-Foy, Québec, Canada G1V 4G5
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht,
Movement Sciences, Maastricht University, Maastricht, 6200 The Netherlands
Search for other papers by Matthijs K C Hesselink in
Google Scholar
PubMed
Centre de Recherche de l’Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste-Foy, Québec, Canada G1V 4G5
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht,
Movement Sciences, Maastricht University, Maastricht, 6200 The Netherlands
Search for other papers by Yves Deshaies in
Google Scholar
PubMed
Centre de Recherche de l’Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste-Foy, Québec, Canada G1V 4G5
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht,
Movement Sciences, Maastricht University, Maastricht, 6200 The Netherlands
Search for other papers by Denis Richard in
Google Scholar
PubMed
Centre de Recherche de l’Hôpital Laval, Université Laval, Y2186, 2725 Chemin Ste-Foy, Québec, Canada G1V 4G5
Department of Human Biology, Nutrition and Toxicology Research Institute Maastricht,
Movement Sciences, Maastricht University, Maastricht, 6200 The Netherlands
Search for other papers by Katherine Cianflone in
Google Scholar
PubMed
) with no change in skeletal muscle GLUT-4 protein levels as assessed by western analysis (data not shown). Evaluation of fatty acid oxidation The increased food intake despite similar weight gain in C5L2KO-LF mice
Search for other papers by Sihan Lv in
Google Scholar
PubMed
Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
Search for other papers by Xinchen Qiu in
Google Scholar
PubMed
Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
Search for other papers by Jian Li in
Google Scholar
PubMed
Search for other papers by Jinye Liang in
Google Scholar
PubMed
Search for other papers by Weida Li in
Google Scholar
PubMed
Search for other papers by Chao Zhang in
Google Scholar
PubMed
Search for other papers by Zhen-Ning Zhang in
Google Scholar
PubMed
Search for other papers by Bing Luan in
Google Scholar
PubMed
& Karin 2012 ). Disrupted lipid metabolism including fatty acid oxidation and de novo lipogenesis in liver results in the development of hepatic steatosis and contributes to the development of hepatic insulin resistance ( Marchesini et al . 2003
Search for other papers by Melanie Tran in
Google Scholar
PubMed
Search for other papers by Golam Mostofa in
Google Scholar
PubMed
Search for other papers by Michael Picard in
Google Scholar
PubMed
Search for other papers by Jianguo Wu in
Google Scholar
PubMed
Search for other papers by Li Wang in
Google Scholar
PubMed
Search for other papers by Dong-Ju Shin in
Google Scholar
PubMed
timepoints 0, 5, 10, 15, 30, and 60 min after the 6 h fasting period, then cell lysates were collected for immunoblotting analyses. Biochemical analysis Fatty acid oxidation (FAO) enzyme activity was measured in livers of HFHS-fed mice using a
Search for other papers by MC Sugden in
Google Scholar
PubMed
Search for other papers by HS Lall in
Google Scholar
PubMed
Search for other papers by RA Harris in
Google Scholar
PubMed
Search for other papers by MJ Holness in
Google Scholar
PubMed
The pyruvate dehydrogenase kinases (PDK1-4) regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Immunoblot analysis with antibodies raised against recombinant PDK isoforms demonstrated changes in PDK isoform expression in response to experimental hyperthyroidism (100 microg/100 g body weight; 3 days) that was selective for fast-twitch vs slow-twitch skeletal muscle in that PDK2 expression was increased in the fast-twitch skeletal muscle (the anterior tibialis) (by 1. 6-fold; P<0.05) but not in the slow-twitch muscle (the soleus). PDK4 protein expression was increased by experimental hyperthyroidism in both muscle types, there being a greater response in the anterior tibialis (4.2-fold increase; P<0.05) than in the soleus (3.2-fold increase; P<0.05). The hyperthyroidism-associated up-regulation of PDK4 expression was observed in conjunction with suppression of skeletal-muscle PDC activity, but not suppression of glucose uptake/phosphorylation, as measured in vivo in conscious unrestrained rats (using the 2-[(3)H]deoxyglucose technique). We propose that increased PDK isoform expression contributes to the pathology of hyperthyroidism and to PDC inactivation by facilitating the operation of the glucose --> lactate --> glucose (Cori) and glucose --> alanine --> glucose cycles. We also propose that enhanced relative expression of the pyruvate-insensitive PDK isoform (PDK4) in skeletal muscle in hyperthyroidism uncouples glycolytic flux from pyruvate oxidation, sparing pyruvate for non-oxidative entry into the tricarboxylic acid (TCA) cycle, and thereby supporting entry of acetyl-CoA (derived from fatty acid oxidation) into the TCA cycle.
Department of Internal Medicine, Biomedical Research Center, Department of Biological Sciences, University of Ulsan College of Medicine, 88 Olympic‐ro 43‐gil, Songpa‐gu, Seoul 138‐736, Korea
Search for other papers by Eun Hee Koh in
Google Scholar
PubMed
Department of Internal Medicine, Biomedical Research Center, Department of Biological Sciences, University of Ulsan College of Medicine, 88 Olympic‐ro 43‐gil, Songpa‐gu, Seoul 138‐736, Korea
Search for other papers by Ah-Ram Kim in
Google Scholar
PubMed
Search for other papers by Hyunshik Kim in
Google Scholar
PubMed
Search for other papers by Jin Hee Kim in
Google Scholar
PubMed
Search for other papers by Hye-Sun Park in
Google Scholar
PubMed
Search for other papers by Myoung Seok Ko in
Google Scholar
PubMed
Search for other papers by Mi-Ok Kim in
Google Scholar
PubMed
Department of Internal Medicine, Biomedical Research Center, Department of Biological Sciences, University of Ulsan College of Medicine, 88 Olympic‐ro 43‐gil, Songpa‐gu, Seoul 138‐736, Korea
Search for other papers by Hyuk-Joong Kim in
Google Scholar
PubMed
Department of Internal Medicine, Biomedical Research Center, Department of Biological Sciences, University of Ulsan College of Medicine, 88 Olympic‐ro 43‐gil, Songpa‐gu, Seoul 138‐736, Korea
Search for other papers by Bum Joong Kim in
Google Scholar
PubMed
Search for other papers by Hyun Ju Yoo in
Google Scholar
PubMed
Search for other papers by Su Jung Kim in
Google Scholar
PubMed
Department of Internal Medicine, Biomedical Research Center, Department of Biological Sciences, University of Ulsan College of Medicine, 88 Olympic‐ro 43‐gil, Songpa‐gu, Seoul 138‐736, Korea
Search for other papers by Jin Sun Oh in
Google Scholar
PubMed
Department of Internal Medicine, Biomedical Research Center, Department of Biological Sciences, University of Ulsan College of Medicine, 88 Olympic‐ro 43‐gil, Songpa‐gu, Seoul 138‐736, Korea
Search for other papers by Chang-Yun Woo in
Google Scholar
PubMed
Department of Internal Medicine, Biomedical Research Center, Department of Biological Sciences, University of Ulsan College of Medicine, 88 Olympic‐ro 43‐gil, Songpa‐gu, Seoul 138‐736, Korea
Search for other papers by Jung Eun Jang in
Google Scholar
PubMed
Department of Internal Medicine, Biomedical Research Center, Department of Biological Sciences, University of Ulsan College of Medicine, 88 Olympic‐ro 43‐gil, Songpa‐gu, Seoul 138‐736, Korea
Search for other papers by Jaechan Leem in
Google Scholar
PubMed
Search for other papers by Myung Hwan Cho in
Google Scholar
PubMed
Department of Internal Medicine, Biomedical Research Center, Department of Biological Sciences, University of Ulsan College of Medicine, 88 Olympic‐ro 43‐gil, Songpa‐gu, Seoul 138‐736, Korea
Search for other papers by Ki-Up Lee in
Google Scholar
PubMed
, proton leakage, maximal OCR, reserve capacity and non-mitochondrial OCR) were analyzed as described by Hill et al . (2012) ( Supplementary Figure 2 , see section on supplementary data given at the end of this article). Fatty acid oxidation The fatty
Search for other papers by Prasanthi P Koganti in
Google Scholar
PubMed
Search for other papers by Vimal Selvaraj in
Google Scholar
PubMed
status between the mouse and hamster adrenals, we evaluated the expression of a few core genes involved in the regulation of these processes. We found that Cpt1a , a transferase essential for mitochondrial fatty acid oxidation (FAO), was substantially
Search for other papers by Sung-Soo Park in
Google Scholar
PubMed
Search for other papers by Yeon-Joo Lee in
Google Scholar
PubMed
Search for other papers by Sooyeon Song in
Google Scholar
PubMed
Search for other papers by Boyong Kim in
Google Scholar
PubMed
Search for other papers by Hyuno Kang in
Google Scholar
PubMed
Search for other papers by Sejong Oh in
Google Scholar
PubMed
Search for other papers by Eungseok Kim in
Google Scholar
PubMed
unexplored. The liver plays a key role in whole-body energy homeostasis by regulating lipogenesis and fatty acid oxidation ( Reddy & Rao 2006 ). A large body of evidence has shown that two transcription factors, sterol regulatory element-binding protein 1c
Search for other papers by Giselle Adriana Abruzzese in
Google Scholar
PubMed
Search for other papers by Maria Florencia Heber in
Google Scholar
PubMed
Search for other papers by Silvana Rocio Ferreira in
Google Scholar
PubMed
Search for other papers by Leandro Martin Velez in
Google Scholar
PubMed
Search for other papers by Roxana Reynoso in
Google Scholar
PubMed
Search for other papers by Omar Pedro Pignataro in
Google Scholar
PubMed
Search for other papers by Alicia Beatriz Motta in
Google Scholar
PubMed
. Regarding fatty acid oxidation pathways, we found that Pparα mRNA levels showed no differences between the control and PHov groups but were decreased in PHanov ( Fig. 3H , P <0.01), and that Pgc1α levels were lower in both PH animals than in controls
Search for other papers by Andrea Anedda in
Google Scholar
PubMed
Search for other papers by Eduardo Rial in
Google Scholar
PubMed
Search for other papers by M Mar González-Barroso in
Google Scholar
PubMed
present study was to determine whether UCP2 is involved in the action of metformin on white adipocytes. The working hypothesis was that UCP2 could be overexpressed either to uncouple respiration to facilitate fatty acid oxidation or to minimize the
Search for other papers by Jonathan M Mudry in
Google Scholar
PubMed
Search for other papers by Julie Massart in
Google Scholar
PubMed
Search for other papers by Ferenc L M Szekeres in
Google Scholar
PubMed
Section for Integrative Physiology, Section for Integrative Physiology, Department of Molecular Medicine and Surgery
Search for other papers by Anna Krook in
Google Scholar
PubMed
of the phosphorylated form of ACC was unchanged, leading to a larger ratio of inactivated ACC. In cultured C2C12 cells overexpressing TWIST1 or TWIST2, fatty acid oxidation in vitro was unchanged. Thus if glucose utilization is increased while fatty