Search Results

You are looking at 1 - 4 of 4 items for :

  • "myofibre hypertrophy" x
  • Refine by access: All content x
Clear All
Alexander Hennebry AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Alexander Hennebry in
Google Scholar
PubMed
Close
,
Jenny Oldham AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Jenny Oldham in
Google Scholar
PubMed
Close
,
Tea Shavlakadze School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Tea Shavlakadze in
Google Scholar
PubMed
Close
,
Miranda D Grounds School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, Western Australia, Australia

Search for other papers by Miranda D Grounds in
Google Scholar
PubMed
Close
,
Philip Sheard Department of Physiology, University of Otago, Dunedin, New Zealand

Search for other papers by Philip Sheard in
Google Scholar
PubMed
Close
,
Marta L Fiorotto USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA

Search for other papers by Marta L Fiorotto in
Google Scholar
PubMed
Close
,
Shelley Falconer AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Shelley Falconer in
Google Scholar
PubMed
Close
,
Heather K Smith Department of Exercise Sciences, University of Auckland, Auckland, New Zealand

Search for other papers by Heather K Smith in
Google Scholar
PubMed
Close
,
Carole Berry AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Carole Berry in
Google Scholar
PubMed
Close
,
Ferenc Jeanplong AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Ferenc Jeanplong in
Google Scholar
PubMed
Close
,
Jeremy Bracegirdle AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Jeremy Bracegirdle in
Google Scholar
PubMed
Close
,
Kenneth Matthews AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Kenneth Matthews in
Google Scholar
PubMed
Close
,
Gina Nicholas AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Gina Nicholas in
Google Scholar
PubMed
Close
,
Mônica Senna-Salerno AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Mônica Senna-Salerno in
Google Scholar
PubMed
Close
,
Trevor Watson AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Trevor Watson in
Google Scholar
PubMed
Close
, and
Christopher D McMahon AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Christopher D McMahon in
Google Scholar
PubMed
Close

Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue, we crossed myostatin null (Mstn −/−) mice with mice overexpressing Igf1 in skeletal muscle (Igf1 +) to generate six genotypes of male mice; wild type (Mstn +/+ ), Mstn +/−, Mstn −/−, Mstn +/+ :Igf1 +, Mstn +/− :Igf1 + and Mstn −/− :Igf1 +. Overexpression of Igf1 increased the mass of mixed fibre type muscles (e.g. Quadriceps femoris) by 19% over Mstn +/+ , 33% over Mstn +/− and 49% over Mstn −/− (P < 0.001). By contrast, the mass of the gonadal fat pad was correspondingly reduced with the removal of Mstn and addition of Igf1. Myostatin regulated the number, while IGF1 regulated the size of myofibres, and the deletion of Mstn and Igf1 + independently increased the proportion of fast type IIB myosin heavy chain isoforms in T. anterior (up to 10% each, P < 0.001). The abundance of AKT and rpS6 was increased in muscles of Mstn −/− mice, while phosphorylation of AKTS473 was increased in Igf1 + mice (Mstn +/+ :Igf1 +, Mstn +/− :Igf1 + and Mstn −/− :Igf1 +). Our results demonstrate that a greater than additive effect is observed on the growth of skeletal muscle and in the reduction of body fat when myostatin is absent and IGF1 is in excess. Finally, we show that myostatin and IGF1 regulate skeletal muscle size, myofibre type and gonadal fat through distinct mechanisms that involve increasing the total abundance and phosphorylation status of AKT and rpS6.

Free access
Ryan Paul University of Auckland Waikato Clinical School, Hamilton, New Zealand

Search for other papers by Ryan Paul in
Google Scholar
PubMed
Close
,
Kim Whiteman ManukaMed LP, Hamilton, New Zealand

Search for other papers by Kim Whiteman in
Google Scholar
PubMed
Close
,
Shelley J Falconer AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Shelley J Falconer in
Google Scholar
PubMed
Close
,
Jenny M Oldham AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Jenny M Oldham in
Google Scholar
PubMed
Close
,
Ferenc Jeanplong AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Ferenc Jeanplong in
Google Scholar
PubMed
Close
,
Kenneth G Matthews AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Kenneth G Matthews in
Google Scholar
PubMed
Close
,
Heather K Smith Department of Exercise Sciences, University of Auckland, Auckland Mail Centre, Auckland, New Zealand

Search for other papers by Heather K Smith in
Google Scholar
PubMed
Close
,
Mark Thomas ManukaMed LP, Hamilton, New Zealand

Search for other papers by Mark Thomas in
Google Scholar
PubMed
Close
,
Trevor Watson AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Trevor Watson in
Google Scholar
PubMed
Close
, and
Christopher D McMahon ManukaMed LP, Hamilton, New Zealand
AgResearch Ltd, Hamilton, New Zealand

Search for other papers by Christopher D McMahon in
Google Scholar
PubMed
Close

Insulin-like growth factor-1 (IGF1) is crucial for regulating post-natal growth and, along with myostatin (MSTN), regulates muscle size. Here, we sought to clarify the roles of these two genes in regulating sexually dimorphic growth of body and muscle mass. In the first study, we established that Igf1 mRNA was increased to a greater extent and Igf1 receptor mRNA increased earlier in male, than in female, gastrocnemius muscles during the rapid phase of growth (from 2 to 6 weeks) were unchanged, thereafter, to 32 weeks of age in WT mice (P < 0.001). In the second study, we sought to determine if supplemental IGF1 could overcome the sexual dimorphism of muscle and body mass, when myostatin is absent. We crossed myostatin null (Mstn –/– ) mice with mice over-expressing Igf1 in skeletal muscle (Igf1 +) to generate six genotypes; control (Mstn+/+ ), Mstn +/– , Mstn –/– , Mstn+/+ :Igf1 +, Mstn +/– :Igf1 + and Mstn –/– :Igf1 + (n = 8 per genotype and sex). In both sexes, body mass at 12 weeks was increased by at least 1.6-fold and muscle mass by at least 3-fold in Mstn –/– :Igf1 + compared with Mstn+/+ mice (P < 0.001). The abundance of AKT was increased in muscles of mice transgenic for Mstn, while phosphorylation of AKTS473 was increased in both male and female mice transgenic for Igf1+ . The ratio of phosphorylated to total AKT was 1.9-fold greater in male mice (P < 0.001). Thus, despite increased growth of skeletal muscle and body size when myostatin was absent and IGF1 was in excess, sexual dimorphism persisted, an effect consistent with greater IGF1-induced activation of AKT in skeletal muscles of males.

Restricted access
R. H. McCusker
Search for other papers by R. H. McCusker in
Google Scholar
PubMed
Close
and
D. R. Campion
Search for other papers by D. R. Campion in
Google Scholar
PubMed
Close

ABSTRACT

Tumours secreting GH (GH1) or GH plus prolactin (GH3) were induced in young (1-week-old) and mature (17-week-old) female Wistar–Furth rats. Young animals were killed at 11 weeks and mature rats at 30 weeks of age. Induction of tumours increased serum GH concentrations and body and soleus muscle weights when compared with those of control rats. The soleus and extensor digitorum longus (EDL) muscles were examined in transverse section by electron microscopy. The percentages of myofibres with myonuclei and with satellite cell nuclei present in both the soleus and EDL muscles were generally greater in young rats with tumours than in young control rats. The percentage of myofibres in the EDL muscle with myonuclei present was higher in mature rats with GH1 tumours compared with age-matched controls. The presence of tumours did not affect the number of fibres in the soleus muscle of either young or mature rats. It was concluded that increased GH concentrations increased muscle weight by increasing the DNA content of myofibres and by myofibre hypertrophy. The rate of proliferation of satellite cells apparently exceeded the rate of incorporation of daughter nuclei into the fibres of the young tumourbearing rats when compared with that of young controls. Thus, the factors regulating satellite cell proliferation and nuclear incorporation into the myofibre do not appear to be directly coupled.

J. Endocr. (1986) 111, 279–285

Restricted access
M Granado Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain

Search for other papers by M Granado in
Google Scholar
PubMed
Close
,
A I Martín Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain

Search for other papers by A I Martín in
Google Scholar
PubMed
Close
,
T Priego Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain

Search for other papers by T Priego in
Google Scholar
PubMed
Close
,
A López-Calderón Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain

Search for other papers by A López-Calderón in
Google Scholar
PubMed
Close
, and
M A Villanúa Department of Physiology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain

Search for other papers by M A Villanúa in
Google Scholar
PubMed
Close

mass by enhancing myofibre hypertrophy and stimulating myogenesis ( Musaro et al. 2001 ). However, it has been reported ( Foulstone et al. 2001 ) that the effects of IGF-I on muscle may depend on the cytokine environment in such a way that in the

Free access