Search Results
Neurofisiología Molecular, Escuela de Dietética y Nutrición, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, C.P. 14370, México, Distrito Federal, México
Search for other papers by F Aréchiga-Ceballos in
Google Scholar
PubMed
Search for other papers by E Alvarez-Salas in
Google Scholar
PubMed
Search for other papers by G Matamoros-Trejo in
Google Scholar
PubMed
Search for other papers by M I Amaya in
Google Scholar
PubMed
Search for other papers by C García-Luna in
Google Scholar
PubMed
Search for other papers by P de Gortari in
Google Scholar
PubMed
), thus enhancing the risk for the development of different metabolic disturbances. Our aim was to evaluate the responsiveness of neurons in the paraventricular nucleus (PVN) that express the neuropeptides, pro-thyrotropin-releasing hormone (proTRH) and
Search for other papers by C García-Luna in
Google Scholar
PubMed
Search for other papers by P Soberanes-Chávez in
Google Scholar
PubMed
Search for other papers by P de Gortari in
Google Scholar
PubMed
-power 10×-magnification dark-field illumination photomicrographs of representative samples of radioactive-labeled proTRH mRNA by ISH of aPVN of C (A), LPF (B) and DPF (C), of mPVN of C (D), LPF (E) and DPF (F), and of cPVN of C (G), LPF (H) and DPF (I
Search for other papers by G A C van Haasteren in
Google Scholar
PubMed
Search for other papers by E Linkels in
Google Scholar
PubMed
Search for other papers by W Klootwijk in
Google Scholar
PubMed
Search for other papers by H van Toor in
Google Scholar
PubMed
Search for other papers by J M M Rondeel in
Google Scholar
PubMed
Search for other papers by A P N Themmen in
Google Scholar
PubMed
Search for other papers by F H de Jong in
Google Scholar
PubMed
Search for other papers by K Valentijn in
Google Scholar
PubMed
Search for other papers by H Vaudry in
Google Scholar
PubMed
Search for other papers by K Bauer in
Google Scholar
PubMed
Search for other papers by T J Visser in
Google Scholar
PubMed
Search for other papers by W J de Greef in
Google Scholar
PubMed
Abstract
The purpose of this study was to investigate the mechanisms involved in the reduced thyroid function in starved, young female rats. Food deprivation for 3 days reduced the hypothalamic content of prothyrotrophin-releasing hormone (proTRH) mRNA, the amount of proTRH-derived peptides (TRH and proTRH160–169) in the paraventricular nucleus, the release of proTRH-derived peptides into hypophysial portal blood and the pituitary levels of TSHβ mRNA. Plasma TSH was either not affected or slightly reduced by starvation, but food deprivation induced marked increases in plasma corticosterone and decreases in plasma thyroid hormones. Refeeding after starvation normalized these parameters. Since the molar ratio of TRH and proTRH160–169 in hypophysial portal blood was not affected by food deprivation, it seems unlikely that proTRH processing is altered by starvation. The median eminence content of pGlu-His-Pro-Gly (TRH-Gly, a presumed immediate precursor of TRH), proTRH160–169 or TRH were not affected by food deprivation. Since median eminence TRH-Gly levels were very low compared with other proTRH-derived peptides it is unlikely that α-amidation is a rate-limiting step in hypothalamic TRH synthesis.
Possible negative effects of the increased corticosterone levels during starvation on proTRH and TSH synthesis were studied in adrenalectomized rats which were treated with corticosterone in their drinking water (0·2 mg/ml). In this way, the starvation-induced increase in plasma corticosterone could be prevented. Although plasma levels of thyroid hormones remained reduced, food deprivation no longer had negative effects on hypothalamic proTRH mRNA, pituitary TSHβ mRNA and plasma TSH in starved adrenalectomized rats. Thus, high levels of corticosteroids seem to exert negative effects on the synthesis and release of proTRH and TSH. This conclusion is corroborated by the observation that TRH release into hypophysial portal blood became reduced after administration of the synthetic glucocorticosteroid dexamethasone.
On the basis of these results, it is suggested that the reduced thyroid function during starvation is due to a reduced synthesis and release of TRH and TSH. Furthermore, the reduced TRH and TSH synthesis during food deprivation are probably caused by the starvation-induced enhanced adrenal secretion of corticosterone.
Journal of Endocrinology (1995) 145, 143–153
Search for other papers by Kristien Vandenborne in
Google Scholar
PubMed
Search for other papers by Simon A Roelens in
Google Scholar
PubMed
Search for other papers by Veerle M Darras in
Google Scholar
PubMed
Search for other papers by Eduard R Kühn in
Google Scholar
PubMed
Search for other papers by Serge Van der Geyten in
Google Scholar
PubMed
Processing of thyrotropin-releasing hormone prohormone (proTRH) generates a biologically active peptide, prepro-TRH-(160–169), which regulates TRH-induced thyrotropin secretion. PNAS 87 4439 –4443. Bulant M , Ladram A
Search for other papers by G A C van Haasteren in
Google Scholar
PubMed
Search for other papers by H van Toor in
Google Scholar
PubMed
Search for other papers by W Klootwijk in
Google Scholar
PubMed
Search for other papers by B Handler in
Google Scholar
PubMed
Search for other papers by E Linkels in
Google Scholar
PubMed
Search for other papers by P van der Schoot in
Google Scholar
PubMed
Search for other papers by J van Ophemert in
Google Scholar
PubMed
Search for other papers by F H de Jong in
Google Scholar
PubMed
Search for other papers by T J Visser in
Google Scholar
PubMed
Search for other papers by W J de Greef in
Google Scholar
PubMed
Abstract
This study describes the effects of litter size and acute suckling on the synthesis and release of hypothalamic TRH, as indirectly estimated by determination of hypothalamic prothyrotrophin-releasing hormone (proTRH) mRNA and median eminence TRH content. The effects of litter size (five or ten pups) were studied throughout lactation, while suckling-induced acute changes were analyzed on day 13 of lactation in dams with ten pups. In view of the enhanced adrenal activity during lactation and recent evidence that corticosteroids have negative effects on hypothalamic TRH, we also studied adrenalectomized (ADX) dams treated with corticosterone to maintain basal plasma corticosterone levels.
In addition to an increased plasma level of prolactin (PRL), adrenal weight and plasma corticosterone increased, while plasma TSH, tri-iodothyronine (T3), thyroxine (T4) and free T4 (FT4) levels decreased during lactation. Litter size correlated positively with plasma PRL, adrenal weight and plasma corticosterone. No effect of litter size was observed on plasma T3, but rats with ten pups had lower plasma TSH, T4 and FT4 than rats with a five-pup litter. Compared with dioestrous rats, lactating rats showed an increased hypothalamic proTRH mRNA content on day 2, but not on days 8 and 15 of lactation. Median eminence TRH in lactating rats gradually increased until day 15 and decreased thereafter. Acute suckling, after a 6-h separation of mother and pups, rapidly increased plasma PRL and corticosterone in the mothers, but had no effects on plasma TSH and thyroid hormone levels. Hypothalamic proTRH mRNA increased twofold after 0·5 h of suckling, and then gradually returned to presuckling values after 6 h. Compared with sham-operated rats, corticosterone-substituted ADX rats with ten pups had increased plasma PRL and TSH, hypothalamic proTRH mRNA and pituitary TSH β mRNA on day 15 of lactation. Moreover, while acute suckling did not enhance TSH release in sham-operated rats, it provoked not only PRL but also TSH release in corticosterone-substituted ADX dams.
It is concluded that suckling exerts a rapid, positive effect on hypothalamic proTRH mRNA content. However, the concurrent enhanced adrenal activity has negative effects on hypothalamic proTRH gene expression resulting in a suppressed hypophysial-thyroid axis during lactation. While TRH appears to play a role in PRL release during the first days of lactation and during acute suckling, TRH seems not important in maintaining PRL secretion during continued suckling.
Journal of Endocrinology (1996) 148, 325–336
Search for other papers by N. G. Blake in
Google Scholar
PubMed
Search for other papers by M. R. Johnson in
Google Scholar
PubMed
Search for other papers by D. J. A. Eckland in
Google Scholar
PubMed
Search for other papers by O. J. F. Foster in
Google Scholar
PubMed
Search for other papers by S. L. Lightman in
Google Scholar
PubMed
ABSTRACT
Propylthiouracil (PTU) was administered to rats for different lengths of time with or without food deprivation on the last 2 days. Within 4 days of PTU treatment peripheral 3,5,3′-tri-iodothyronine (T3) fell to low levels and β-subunit of thyroid-stimulating hormnone (β-TSH) mRNA increased significantly in the anterior pituitary. Pro-thyrotrophin-releasing hormone (pro-TRH) mRNA in the hypothalamic paraventricular nucleus (PVN) increased significantly in the control group of animals by 8 days and in the food-deprived group by day 12; the increment of pro-TRH mRNA in the food-deprived group on day 12 was significantly less than that in the control group. In a second study, animals were treated with intraperitoneal injections of T3 with or without the food deprivation. After 4 days of T3 treatment, peripheral T3 levels were markedly increased and pro-TRH mRNA in the PVN and β-TSH mRNA in the anterior pituitary were significantly reduced. Food deprivation had no additional suppressive effect. These studies confirm that the predominant effect of food deprivation on the thyroid axis is at the hypothalamic or suprahypothalamic level and that it can, at least in part, overcome the increase in TRH mRNA due to diminished T3 feedback.
Journal of Endocrinology (1992) 133, 183–188
Search for other papers by Patricia Joseph-Bravo in
Google Scholar
PubMed
Search for other papers by Lorraine Jaimes-Hoy in
Google Scholar
PubMed
Search for other papers by Jean-Louis Charli in
Google Scholar
PubMed
-TRH mRNA, the leader sequence is cleaved, synthesis of pro-TRH continues with ribosomes linked to rough endoplasmic reticulum (RER) and precursor is transported inside the ER. (C) At the transGolgi pro-TRH may suffer a first cleavage by protein convertase 1
Search for other papers by G A C van Haasteren in
Google Scholar
PubMed
Search for other papers by E Sleddens-Linkels in
Google Scholar
PubMed
Search for other papers by H van Toor in
Google Scholar
PubMed
Search for other papers by W Klootwijk in
Google Scholar
PubMed
Search for other papers by F H de Jong in
Google Scholar
PubMed
Search for other papers by T J Visser in
Google Scholar
PubMed
Search for other papers by W J de Greef in
Google Scholar
PubMed
Abstract
We investigated the effects of diabetes mellitus on the hypothalamo-hypophysial-thyroid axis in male (R×U) F1 and R-Amsterdam rats, which were found to respond to streptozotocin (STZ)-induced diabetes mellitus with no or marked increases, respectively, in plasma corticosterone. Males received STZ (65 mg/kg i.v.) or vehicle, and were killed 1, 2 or 3 weeks later. At all times studied, STZ-induced diabetes mellitus resulted in reduced plasma TSH, thyroxine (T4) and 3,5,3′-tri-iodothyronine (T3). Since the dialyzable T4 fraction increased after STZ, probably as a result of decreased T4-binding prealbumin, plasma free T4 was not altered during diabetes. In contrast, both free T3 and its dialyzable fraction decreased during diabetes, which was associated with an increase in T4-binding globulin. Hepatic activity of type I deiodinase decreased and T4 UDP-glucuronyltransferase increased after STZ treatment. Thus, the lowered plasma T3 during diabetes may be due to decreased hepatic T4 to T3 conversion.
Median eminence content of TRH increased after STZ, suggesting that hypothalamic TRH release is reduced during diabetes and that this is not caused by impaired synthesis or axonal transport of TRH to the median eminence. Hypothalamic proTRH mRNA did not change in diabetic (R×U) F1 rats during the period of observation, but was lower in R-Amsterdam rats 3 weeks after STZ. Similarly, pituitary TSH and TSHβ mRNA had decreased in R-Amsterdam rats by 1 week after STZ treatment, but did not change in (R×U) F1 rats. The difference between the responses in diabetic R-Amsterdam and (R×U) F1 rats may be explained on the basis of plasma corticosterone levels which increased in R-Amsterdam rats only. Hypothalamic TRH content was not affected by diabetes mellitus, but the hypothalami of diabetic rats released less TRH in vitro than those of control rats. Moreover, insulin had a positive effect on TRH release in vitro.
In conclusion, the reduced hypothalamic TRH release during diabetes is probably not caused by decreases in TRH synthesis or transport to the median eminence, but seems to be due to impaired TRH release from the median eminence which may be related to the lack of insulin. Inhibition of proTRH and TSHβ gene expression in diabetic R-Amsterdam rats is not a primary event but appears to be secondary to enhanced adrenal activity in these animals during diabetes.
Journal of Endocrinology (1997) 153, 259–267
Search for other papers by G A C van Haasteren in
Google Scholar
PubMed
Search for other papers by E Linkels in
Google Scholar
PubMed
Search for other papers by H van Toor in
Google Scholar
PubMed
Search for other papers by W Klootwijk in
Google Scholar
PubMed
Search for other papers by E Kaptein in
Google Scholar
PubMed
Search for other papers by F H de Jong in
Google Scholar
PubMed
Search for other papers by M J Reymond in
Google Scholar
PubMed
Search for other papers by T J Visser in
Google Scholar
PubMed
Search for other papers by W J de Greef in
Google Scholar
PubMed
Abstract
The reduced thyroid activity during short-term starvation is associated with a lowered hypothalamic synthesis and secretion of TRH. However, little is known about the cause of the reduced thyroid function during prolonged malnutrition. We have therefore studied the effects of food reduction to one-third of normal (FR33) on the hypothalamus-pituitary-thyroid axis of male and female Wistar rats. After 3 weeks body weights of FR33 rats were almost 50% lower than those of controls. In both sexes, FR33 caused marked increases in serum corticosterone, and decreases in serum TSH, thyroxine (T4), free T4, tri-iodothyronine (T3) and free T3. While the free T3 fraction (FFT3) in serum decreased, the free T4 fraction (FFT4) tended to increase. Electrophoretic analysis indicated that decreased FFT3 was correlated with an increased thyroxine-binding globulin, while the increase in FFT4 seemed due to a decreased thyroxine-binding prealbumin binding capacity. Total RNA and proTRH mRNA in the hypothalamus were not affected by FR33. Median eminence and posterior pituitary TRH content tended to increase in FR33 rats, suggesting that hypothalamic TRH release is reduced in FR33 rats. Anterior pituitary TSH content was decreased by FR33 in both sexes, but pituitary TSHβ mRNA and TRH receptor status were not affected except for increased pituitary TSHβ mRNA in female FR33 rats. Although FR33 had no effect on pituitary weight, pituitary RNA and membrane protein content in FR33 rats were 50–70% lower than values in controls.
In conclusion, prolonged food reduction suppresses the pituitary-thyroid axis in rats. In contrast to short-term food deprivation, the mechanism whereby serum TSH is suppressed does not appear to involve decreases in proTRH gene expression, but may include effects on pituitary mRNA translation. Our results further support the hypothesis that TSH release may be lowered by increased corticosterone secretion, although the mechanism of this effect may differ between acute starvation and prolonged food reduction.
Journal of Endocrinology (1996) 150, 169–178
Search for other papers by G Croissandeau in
Google Scholar
PubMed
Search for other papers by N Schussler in
Google Scholar
PubMed
Search for other papers by D Grouselle in
Google Scholar
PubMed
Search for other papers by P Pagesy in
Google Scholar
PubMed
Search for other papers by C Rauch in
Google Scholar
PubMed
Search for other papers by M C Bayet in
Google Scholar
PubMed
Search for other papers by F Peillon in
Google Scholar
PubMed
Search for other papers by M Le Dafniet in
Google Scholar
PubMed
Abstract
TRH gene expression in the anterior pituitary has previously been reported in the human in vivo and in the rat in vitro. Until now, modulation of this synthesis with glucocorticoids and thyroid hormones has been observed in rats. The present study demonstrates for the first time that the TRH gene is also expressed, in vivo, in the rat anterior pituitary and that anterior pituitary TRH-like immunoreactivity (TRH-LI) and elongated forms of the immediate TRH progenitor sequence (TRH-elongated peptide) contents are also modulated by estrogens (E2). To investigate the presence of proTRH mRNA in the rat anterior pituitary, total RNA was reverse transcribed (RT) and the RT products were then amplified by PCR. Treatments with E2 were performed on intact and ovariectomized (OVX) rats for 2 months. TRH-LI was measured by RIA with an antibody which did not recognize the TRH-like peptide, pGlu-Glu-Pro-NH2 (<EEP-NH2) (cross-reactivity <0·1%) and was characterized further as TRH-LI by HPLC. TRH-elongated peptides were measured by EIA and characterized by Sephadex G-50 chromatography and immunoblotting (molecular mass 25–35 kDa). The plasma prolactin levels and the pituitary sizes were increased by E2 treatment in both intact and OVX rats. Anterior pituitary TRH-LI increased in intact E2-treated rats compared with intact rats (82·7 ± 19·0 versus 39·6 ± 3·6 fmol/mg protein; means ± s.e.m.; P<0·001). This increase was greater when E2 was administered to OVX rats (599·0 ± 98·4 after E2 treatment versus 58·6 ± 3·6 fmol/mg protein; P<0·001). In intact rats, anterior pituitary TRH-elongated peptide contents were not modified by E2 treatment while they were significantly decreased in OVX E2-treated rats (144·6 ±8·8 versus 223·7 ± 9·5 fmol/mg protein; P<0·001). These results demonstrate TRH gene expression in the rat anterior pituitary in vivo and suggest that E2 treatment is responsible for an increase in anterior pituitary TRH-LI, together with a decrease in TRH-elongated peptide contents.
Journal of Endocrinology (1996) 151, 87–96