Search Results

You are looking at 1 - 10 of 109 items for :

  • clock genes x
  • Refine by access: All content x
Clear All
Karolína Liška Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
Third Faculty of Medicine, Charles University, Prague, Czech Republic

Search for other papers by Karolína Liška in
Google Scholar
PubMed
Close
,
Martin Sládek Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic

Search for other papers by Martin Sládek in
Google Scholar
PubMed
Close
,
Vendula Čečmanová Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic

Search for other papers by Vendula Čečmanová in
Google Scholar
PubMed
Close
, and
Alena Sumová Laboratory of Biological Rhythms, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic

Search for other papers by Alena Sumová in
Google Scholar
PubMed
Close

clock genes (e.g. Per1,2 , Cry1,2 , Bmal1 , Nr1d1 ) and temporally controls expression of tissue-specific physiologically relevant genes. The clock in the CP is self-autonomous because it can run in absence of any rhythmic input, as demonstrated in

Restricted access
Anjara Rabearivony School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China

Search for other papers by Anjara Rabearivony in
Google Scholar
PubMed
Close
,
Huan Li School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China

Search for other papers by Huan Li in
Google Scholar
PubMed
Close
,
Shiyao Zhang School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China

Search for other papers by Shiyao Zhang in
Google Scholar
PubMed
Close
,
Siyu Chen School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China

Search for other papers by Siyu Chen in
Google Scholar
PubMed
Close
,
Xiaofei An Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China

Search for other papers by Xiaofei An in
Google Scholar
PubMed
Close
, and
Chang Liu School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, China

Search for other papers by Chang Liu in
Google Scholar
PubMed
Close

( Welsh et al. 1995, 2004 , Balsalobre et al. 1998 , Lowrey & Takahashi 2004 , Nagoshi et al. 2004 , Yoo et al. 2004 ). For instance, it has been reported that external temperature cycles can evoke rhythmic clock gene expression in Rat-1

Free access
GA Lincoln
Search for other papers by GA Lincoln in
Google Scholar
PubMed
Close
,
H Andersson
Search for other papers by H Andersson in
Google Scholar
PubMed
Close
, and
A Loudon
Search for other papers by A Loudon in
Google Scholar
PubMed
Close

Melatonin-based photoperiod time-measurement and circannual rhythm generation are long-term time-keeping systems used to regulate seasonal cycles in physiology and behaviour in a wide range of mammals including man. We summarise recent evidence that temporal, melatonin-controlled expression of clock genes in specific calendar cells may provide a molecular mechanism for long-term timing. The agranular secretory cells of the pars tuberalis (PT) of the pituitary gland provide a model cell-type because they express a high density of melatonin (mt1) receptors and are implicated in photoperiod/circannual regulation of prolactin secretion and the associated seasonal biological responses. Studies of seasonal breeding hamsters and sheep indicate that circadian clock gene expression in the PT is modulated by photoperiod via the melatonin signal. In the Syrian and Siberian hamster PT, the high amplitude Per1 rhythm associated with dawn is suppressed under short photoperiods, an effect that is mimicked by melatonin treatment. More extensive studies in sheep show that many clock genes (e.g. Bmal1, Clock, Per1, Per2, Cry1 and Cry2) are expressed in the PT, and their expression oscillates through the 24-h light/darkness cycle in a temporal sequence distinct from that in the hypothalamic suprachiasmatic nucleus (central circadian pacemaker). Activation of Per1 occurs in the early light phase (dawn), while activation of Cry1 occurs in the dark phase (dusk), thus photoperiod-induced changes in the relative phase of Per and Cry gene expression acting through PER/CRY protein/protein interaction provide a potential mechanism for decoding the melatonin signal and generating a long-term photoperiodic response. The current challenge is to identify other calendar cells in the central nervous system regulating long-term cycles in reproduction, body weight and other seasonal characteristics and to establish whether clock genes provide a conserved molecular mechanism for long-term timekeeping.

Free access
J Fahrenkrug Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by J Fahrenkrug in
Google Scholar
PubMed
Close
,
B Georg Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by B Georg in
Google Scholar
PubMed
Close
,
J Hannibal Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by J Hannibal in
Google Scholar
PubMed
Close
, and
H L Jørgensen Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark

Search for other papers by H L Jørgensen in
Google Scholar
PubMed
Close

cells, the molecular machinery is composed of the same clock genes and their protein products connected by autoregulatory feedback loops. The major loop comprises the PAS domain helix-loop-helix transcriptional activators BMAL1 and CLOCK forming

Open access
Elizabeth K Fletcher Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
Tufts Medical Center, Boston, Massachusetts, USA

Search for other papers by Elizabeth K Fletcher in
Google Scholar
PubMed
Close
,
Monica Kanki Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by Monica Kanki in
Google Scholar
PubMed
Close
,
James Morgan Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by James Morgan in
Google Scholar
PubMed
Close
,
David W Ray NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK

Search for other papers by David W Ray in
Google Scholar
PubMed
Close
,
Lea M Delbridge Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Lea M Delbridge in
Google Scholar
PubMed
Close
,
Peter J Fuller Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by Peter J Fuller in
Google Scholar
PubMed
Close
,
Colin D Clyne Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by Colin D Clyne in
Google Scholar
PubMed
Close
, and
Morag J Young Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia

Search for other papers by Morag J Young in
Google Scholar
PubMed
Close

hearts from wild-type mice vs mice lacking the MR selectively in cardiomyocytes (myoMRKO) identified several circadian clock genes that were differentially regulated in naïve cardiomyocyte MR-null mice: PERIOD 2 ( PER2 ), Circadian Locomotor Output

Free access
Michaela D Wharfe School of Anatomy, Metabolomics Australia, Physiology and Human Biology, The University of Western Australia, M309, Perth 6009, Australia

Search for other papers by Michaela D Wharfe in
Google Scholar
PubMed
Close
,
Peter J Mark School of Anatomy, Metabolomics Australia, Physiology and Human Biology, The University of Western Australia, M309, Perth 6009, Australia

Search for other papers by Peter J Mark in
Google Scholar
PubMed
Close
,
Caitlin S Wyrwoll School of Anatomy, Metabolomics Australia, Physiology and Human Biology, The University of Western Australia, M309, Perth 6009, Australia

Search for other papers by Caitlin S Wyrwoll in
Google Scholar
PubMed
Close
,
Jeremy T Smith School of Anatomy, Metabolomics Australia, Physiology and Human Biology, The University of Western Australia, M309, Perth 6009, Australia

Search for other papers by Jeremy T Smith in
Google Scholar
PubMed
Close
,
Cassandra Yap School of Anatomy, Metabolomics Australia, Physiology and Human Biology, The University of Western Australia, M309, Perth 6009, Australia

Search for other papers by Cassandra Yap in
Google Scholar
PubMed
Close
,
Michael W Clarke School of Anatomy, Metabolomics Australia, Physiology and Human Biology, The University of Western Australia, M309, Perth 6009, Australia

Search for other papers by Michael W Clarke in
Google Scholar
PubMed
Close
, and
Brendan J Waddell School of Anatomy, Metabolomics Australia, Physiology and Human Biology, The University of Western Australia, M309, Perth 6009, Australia

Search for other papers by Brendan J Waddell in
Google Scholar
PubMed
Close

part by the rhythmic expression of clock genes in the suprachiasmatic nucleus (SCN) ( Nader et al . 2010 ). These clock genes ( Bmal1/Arntl , Clock , Per1 , Per2 , Cry1 and Cry2 ) form a molecular network of transcriptional–translational loops to

Free access
Marianna Minnetti Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy

Search for other papers by Marianna Minnetti in
Google Scholar
PubMed
Close
,
Valeria Hasenmajer Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy

Search for other papers by Valeria Hasenmajer in
Google Scholar
PubMed
Close
,
Riccardo Pofi Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy

Search for other papers by Riccardo Pofi in
Google Scholar
PubMed
Close
,
Mary Anna Venneri Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy

Search for other papers by Mary Anna Venneri in
Google Scholar
PubMed
Close
,
Krystallenia I Alexandraki Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece

Search for other papers by Krystallenia I Alexandraki in
Google Scholar
PubMed
Close
, and
Andrea M Isidori Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy

Search for other papers by Andrea M Isidori in
Google Scholar
PubMed
Close

. The ‘core’ clock genes include the master genes CLOCK and BMAL1 (also named ARNTL ). Their expression, however, also activates some other proteins that serve as counterbalances and gradually build up in cells over a 12-h period, progressively

Free access
Michael Hastings Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK

Search for other papers by Michael Hastings in
Google Scholar
PubMed
Close
,
John S O’Neill Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK

Search for other papers by John S O’Neill in
Google Scholar
PubMed
Close
, and
Elizabeth S Maywood Division of Neurobiology, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK

Search for other papers by Elizabeth S Maywood in
Google Scholar
PubMed
Close

rhythms exhibit intermediate effects, e.g. core body temperature cycles have greater amplitude when subjects sleep but are nevertheless clearly expressed during sleep deprivation. Circadian clock genes How might a single neuron be a

Free access
Anne-Marie Neumann Institute of Neurobiology, University of Lübeck, Lübeck, Germany
Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany

Search for other papers by Anne-Marie Neumann in
Google Scholar
PubMed
Close
,
Cathleen Geißler Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany

Search for other papers by Cathleen Geißler in
Google Scholar
PubMed
Close
,
Violetta Pilorz Institute of Neurobiology, University of Lübeck, Lübeck, Germany
Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany

Search for other papers by Violetta Pilorz in
Google Scholar
PubMed
Close
,
Iwona Olejniczak Institute of Neurobiology, University of Lübeck, Lübeck, Germany
Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany

Search for other papers by Iwona Olejniczak in
Google Scholar
PubMed
Close
,
Alfor G Lewis Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA

Search for other papers by Alfor G Lewis in
Google Scholar
PubMed
Close
,
Randy J Seeley Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA

Search for other papers by Randy J Seeley in
Google Scholar
PubMed
Close
,
Orr Shomroni Transcriptome and Genome Analysis Core Unit, University Medical Center Göttingen, Göttingen, Germany

Search for other papers by Orr Shomroni in
Google Scholar
PubMed
Close
,
Gabriela Salinas-Riester Transcriptome and Genome Analysis Core Unit, University Medical Center Göttingen, Göttingen, Germany

Search for other papers by Gabriela Salinas-Riester in
Google Scholar
PubMed
Close
,
Henriette Kirchner Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
German Center for Diabetes Research (DZD), Helmholtz Zentrum München, Bayern, Germany

Search for other papers by Henriette Kirchner in
Google Scholar
PubMed
Close
, and
Henrik Oster Institute of Neurobiology, University of Lübeck, Lübeck, Germany
Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany

Search for other papers by Henrik Oster in
Google Scholar
PubMed
Close

from Clock gene mutant mice suggest that the general metabolic benefits of VSG persist despite a dysfunctional circadian system ( Arble et al. 2015 ). The interplay between surgery and circadian organization may influence metabolic and behavioral

Restricted access
Anneleen Segers Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium

Search for other papers by Anneleen Segers in
Google Scholar
PubMed
Close
,
Louis Desmet Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium

Search for other papers by Louis Desmet in
Google Scholar
PubMed
Close
,
Shu Sun Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium

Search for other papers by Shu Sun in
Google Scholar
PubMed
Close
,
Kristin Verbeke Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium

Search for other papers by Kristin Verbeke in
Google Scholar
PubMed
Close
,
Jan Tack Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium

Search for other papers by Jan Tack in
Google Scholar
PubMed
Close
, and
Inge Depoortere Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium

Search for other papers by Inge Depoortere in
Google Scholar
PubMed
Close

. 2004 , Laermans et al . 2015 ). Diurnal rhythms in plasma ghrelin levels and gastric ghrelin expression are abolished in mice that lack the core clock gene Bmal1 , indicating that ghrelin levels are regulated by the circadian clock ( Laermans et al

Restricted access