Search Results

You are looking at 1 - 10 of 73 items for :

  • corticosteroid-binding globulin x
  • Refine by access: All content x
Clear All
Lesley A Hill Departments of Cellular and Physiological Sciences and Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Lesley A Hill in
Google Scholar
PubMed
Close
,
Dimitra A Vassiliadi Endocrine Unit, Second Department of Internal Medicine-Research Institute and Diabetes Center, Attiko University Hospital, Athens, Greece

Search for other papers by Dimitra A Vassiliadi in
Google Scholar
PubMed
Close
,
Ioanna Dimopoulou Endocrine Unit, Second Department of Internal Medicine-Research Institute and Diabetes Center, Attiko University Hospital, Athens, Greece

Search for other papers by Ioanna Dimopoulou in
Google Scholar
PubMed
Close
,
Anna J Anderson BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Anna J Anderson in
Google Scholar
PubMed
Close
,
Luke D Boyle BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Luke D Boyle in
Google Scholar
PubMed
Close
,
Alixe H M Kilgour BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Alixe H M Kilgour in
Google Scholar
PubMed
Close
,
Roland H Stimson BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom

Search for other papers by Roland H Stimson in
Google Scholar
PubMed
Close
,
Yoan Machado Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Yoan Machado in
Google Scholar
PubMed
Close
,
Christopher M Overall Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Christopher M Overall in
Google Scholar
PubMed
Close
,
Brian R Walker BHF Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom

Search for other papers by Brian R Walker in
Google Scholar
PubMed
Close
,
John G Lewis Canterbury Health Laboratories, Christchurch, New Zealand

Search for other papers by John G Lewis in
Google Scholar
PubMed
Close
, and
Geoffrey L Hammond Departments of Cellular and Physiological Sciences and Obstetrics and Gynaecology, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Geoffrey L Hammond in
Google Scholar
PubMed
Close

Introduction Corticosteroid-binding globulin (CBG) transports glucocorticoids and progesterone in human blood and regulates their access to target tissues ( Hammond 2016 a ). Human CBG is also known as SERPINA6 because it shares structural

Open access
Gabriele E Mattos
Search for other papers by Gabriele E Mattos in
Google Scholar
PubMed
Close
,
Jan-Michael Heinzmann
Search for other papers by Jan-Michael Heinzmann in
Google Scholar
PubMed
Close
,
Stefanie Norkowski
Search for other papers by Stefanie Norkowski in
Google Scholar
PubMed
Close
,
Jean-Christophe Helbling Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany
Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany

Search for other papers by Jean-Christophe Helbling in
Google Scholar
PubMed
Close
,
Amandine M Minni Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany
Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany

Search for other papers by Amandine M Minni in
Google Scholar
PubMed
Close
,
Marie-Pierre Moisan Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany
Max Planck Institute of Psychiatry, Institut National de la Recherche Agronomique (INRA), University of Bordeaux, Research Group of Psychoneuroendocrinology, Kraepelinstrasse 2-10, 80804 Munich, Germany

Search for other papers by Marie-Pierre Moisan in
Google Scholar
PubMed
Close
, and
Chadi Touma
Search for other papers by Chadi Touma in
Google Scholar
PubMed
Close

, sex hormone-, and corticosteroid-binding globulin (CBG, also called transcortin). CBG is a monomeric glycoprotein synthesized and stored mainly by the liver ( Rothschild et al . 1972 , Weiser et al . 1979 , Kuhn et al . 1986 , Hammond et al

Free access
Lesley A Hill Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver
Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Lesley A Hill in
Google Scholar
PubMed
Close
,
Tamara S Bodnar Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver

Search for other papers by Tamara S Bodnar in
Google Scholar
PubMed
Close
,
Joanne Weinberg Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver

Search for other papers by Joanne Weinberg in
Google Scholar
PubMed
Close
, and
Geoffrey L Hammond Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver
Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by Geoffrey L Hammond in
Google Scholar
PubMed
Close

Introduction Produced primarily by the liver, corticosteroid-binding globulin (CBG) is a plasma glycoprotein that binds ~90% of circulating glucocorticoids, and regulates their bioavailability in target tissues ( Lin et al. 2010 ). Plasma

Free access
R. W. Kuhn
Search for other papers by R. W. Kuhn in
Google Scholar
PubMed
Close
,
A. L. Green
Search for other papers by A. L. Green in
Google Scholar
PubMed
Close
,
W. J. Raymoure
Search for other papers by W. J. Raymoure in
Google Scholar
PubMed
Close
, and
P. K. Siiteri
Search for other papers by P. K. Siiteri in
Google Scholar
PubMed
Close

ABSTRACT

Previous studies utilizing steroid-binding assays have suggested that corticosteroid-binding globulin (CBG)-like glucocorticoid binding sites are present in various tissues of the rat. It is not known, however, whether such binding reflects the intracellular presence of CBG derived from serum or a special class (type III) of receptors. In order to elucidate this problem, immunocytochemical localization of rat CBG was carried out using a specific antiserum prepared against rat serum CBG and the peroxidase-antiperoxidase technique. Positive staining was found in certain cells of the liver, the distal and/or convoluted tubules of the kidney, the uterus, the follicular cells of the thyroid, and some cells of the anterior pituitary. Other tissues including heart, muscle, thymus, hypothalamus, supraoptic and paraventricular nuclei, and diaphragm were negative. The presence of immunoreactive CBG in specific cells of some glucocorticoid-responsive tissues and not others raises interesting questions concerning the transport of glucocorticoids and their mechanism of action.

J. Endocr. (1986) 108, 31–36

Restricted access
P. A. Robinson
Search for other papers by P. A. Robinson in
Google Scholar
PubMed
Close
,
M. S. Langley
Search for other papers by M. S. Langley in
Google Scholar
PubMed
Close
, and
G. L. Hammond
Search for other papers by G. L. Hammond in
Google Scholar
PubMed
Close

ABSTRACT

A radioimmunoassay (RIA) for human corticosteroid binding globulin (CBG) has been developed using 125I-labelled CBG and a monospecific solid-phase CBG-antiserum (CBG-Ab-cellulose). In an RIA of serum CBG concentrations, pure CBG standards (1–100 ng protein) or samples (1 : 200) were incubated (16 h at 20 °C) with 125I-labelled CBG and CBG-Ab-cellulose. After addition of 2 ml 0·9% NaCl, the tubes were centrifuged, supernatants were aspirated and the 125I-labelled CBG bound to the CBG-Ab-cellulose pellet was counted. The specificity of the RIA was confirmed by parallel displacement curves for serial dilutions of male, female and pregnancy sera, as well as pure CBG standards. The mean ± s.d. recovery (99±8%) of pure CBG (1·6–25·0 ng) added to a diluted serum sample verified the accuracy of the method, and a good correlation (r = 0·97; n = 43) existed between serum CBG cortisol binding capacity (nmol/l) measurements and CBG concentrations (mg protein/l) measured by RIA. Intra- and interassay precisions (C.V.) at low to high serum CBG concentrations were <5% and <9% respectively. The mean ± s.d. serum CBG concentrations (mg protein/l) measured by the RIA were: 21·8±4·6 in boys (n = 12), 20·0±4·2 in girls (n = 9), 20·7±2·7 in men (n = 6), 20·5±2·9 in women (n = 6) and 47·1 ±10·5 in pregnant women (n = 5). The sensitivity of the standard curve used in the routine RIA of serum CBG was 1·0 ng CBG/assay tube, but this could be increased to 0·2 ng/assay tube by reducing the amount of CBG-Ab-cellulose used. The RIA is suitable for both clinical and research purposes, and will aid the identification of abnormal forms of CBG and facilitate studies of the regulation of CBG production in vitro.

J. Endocr. (1985) 104, 259–267

Restricted access
R Boonstra
Search for other papers by R Boonstra in
Google Scholar
PubMed
Close
and
AA Tinnikov
Search for other papers by AA Tinnikov in
Google Scholar
PubMed
Close

Free fatty acids (FFAs) are rapidly mobilized by ACTH and have been shown to be potent endogenous modulators of steroid-protein interactions. We increased FFA in lagomorphs by ACTH and then separated the transient increase in glucocorticoid binding capacity of plasma into that accounted for by changes in binding to albumin and to corticosteroid-binding globulin (CBG). Sequential injections of dexamethasone and ACTH into both snowshoe hares and laboratory rabbits resulted in the rapid mobilization of FFA only after the ACTH injection. The maximum corticosteroid binding capacity increase paralleled that of the FFA increase in both species. In rabbits, CBG levels remained constant over the duration of the experiment. Corticosterone binding by rabbit albumin increased in a dose-dependent fashion in response to increases in FFA (oleic and linoleic acid) concentrations. Finally, by stimulating FFA release in snowshoe hares with ACTH and separating the increase in corticosteroid binding capacity through selective denaturing of CBG by heat, we determined that the increase in plasma binding capacity was a response to changes in binding by albumin, not CBG. Thus FFA released in response to stressors in lagomorphs may effect short-term increases in steroid binding.

Free access
P. A. Robinson
Search for other papers by P. A. Robinson in
Google Scholar
PubMed
Close
,
C. Hawkey
Search for other papers by C. Hawkey in
Google Scholar
PubMed
Close
, and
G. L. Hammond
Search for other papers by G. L. Hammond in
Google Scholar
PubMed
Close

ABSTRACT

A monospecific antiserum against human corticosteroid binding globulin (hCBG) has been used to identify structural similarities between hCBG and CBG in the blood of other primates and representative species of different vertebrate classes. Double immunodiffusion analysis indicated that only CBG in Old World monkeys and apes cross-react with the hCBG antiserum. This was confirmed by a solid-phase radioimmunoassay for hCBG which also demonstrated that CBG in apes is immunologically identical to hCBG and that Old World monkey CBG comprises most, but not all, of the hCBG epitopes. The electrophoretic mobilities of human, gorilla and gibbon CBG were similar (R F 0·50–0·51), but differed from Old World monkey CBG (R F 0·44–0·49) and chimpanzee CBG (R F 0·47). Although serum/plasma cortisol binding capacities were similar in Old World primates, the dissociation half-times (t ½) of cortisol were higher from human and ape CBG (18–25 min) than from Old World monkey CBG (14–18 min). The steroid binding specificities of human and ape (CBG corticosterone > cortisol > progesterone ≥ testosterone) were also different from those of Old World monkey CBG (corticosterone >> cortisol ≃ progesterone > testosterone). Lemur plasma cortisol binding capacity and CBG dissociation t ½ of cortisol were similar to hCBG, but its steroid binding specificity was different (cortisol > corticosterone > progesterone ≥ testosterone) and it did not cross-react with the hCBG antiserum. We could not detect high affinity cortisol binding activity in blood samples from New World monkeys, and they did not cross-react with the hCBG antiserum. These results suggest that considerable modification in the steroid binding activity and structure of CBG has occurred since the evolutionary appearance of the primates, but that the rate of change decreased after the cladogenesis of Catarrhine primates.

J. Endocr. (1985) 104, 251–257

Restricted access
P. A. Robinson
Search for other papers by P. A. Robinson in
Google Scholar
PubMed
Close
and
G. L. Hammond
Search for other papers by G. L. Hammond in
Google Scholar
PubMed
Close

ABSTRACT

A corticosteroid binding globulin variant (CBGv) has been identified in a serum sample taken from an apparently healthy woman during late pregnancy. Identification was based on the observation that it exhibited approximately half the cortisol binding capacity expected when compared to its concentration measured by radioimmunoassay (RIA). Affinity purification of CBGv excluded the possibility that this anomaly was caused by assay interference, and demonstrated that immunoreactive CBGv was capable of binding cortisol. The CBGv had a molecular weight (63 800) similar to normal CBG, and no evidence of molecular aggregation was found by gel filtration. Although the electrophoretic mobility, isoelectric profile and immunochemical identity of CBGv appeared to be similar to normal CBG, it focussed as two distinct bands (pI 5·48 and pI 5·53) after desialylation with neuraminidase, unlike normal CBG which focusses only at pI 5·48. Investigation of the steroid binding characteristics of CBGv revealed a reduced association-rate constant (K a = 1·05 × 109 1/mol) and dissociation half-time (12·5 min) when compared with normal CBG (K a = 1·39 × 109l/mol and 25 min at 0 °C) but an apparently normal steroid binding specificity. Although the physiological significance of this variant is not known, the cortisol concentration in the variant serum was within the normal range of women during late pregnancy. No other CBG variants were identified among other normal controls (n = 66) or nine patients with Cushing's syndrome. It is suggested that comparisons between cortisol binding capacity and RIA will reveal other variants of CBG, and lead to greater understanding of their physiological significance.

J. Endocr. (1985) 104, 269–277

Restricted access
J.-O. Jansson
Search for other papers by J.-O. Jansson in
Google Scholar
PubMed
Close
,
J. Oscarsson
Search for other papers by J. Oscarsson in
Google Scholar
PubMed
Close
,
A. Mode
Search for other papers by A. Mode in
Google Scholar
PubMed
Close
, and
E. M. Ritzén
Search for other papers by E. M. Ritzén in
Google Scholar
PubMed
Close

ABSTRACT

The serum concentration of corticosteroid-binding globulin (CBG) is higher in female rats than in males. Combined hypophysectomy and gonadectomy of female rats reduced the serum concentration of CBG as measured by steady-state polyacrylamide gel electrophoresis, whereas hypophysectomy of male rats increased serum CBG. These effects were seen despite replacement therapy with thyroxine and glucocorticoids. Moreover, neither androgen nor oestrogen treatment affected the serum concentrations of CBG in hypophysectomized rats. Continuous infusions of human or bovine GH (1·4 U/kg per day), by means of osmotic minipumps for 1 week, increased serum concentrations of CBG in both hypophysectomized male and female rats. In contrast, intermittent GH replacement therapy by s.c. injections at 12-h intervals either had no effect or suppressed serum CBG levels. In male rats, neonatal (days 1–2) gonadectomy increased CBG levels more than did prepubertal (day 25) gonadectomy, and testosterone replacement therapy reversed these effects.

It is concluded that GH increases the serum CBG levels of hypophysectomized rats when it is given in a continuous manner, but not when given intermittently. The sex difference in serum CBG levels of normal rats may, therefore, be attributed to the more continuous secretory pattern of GH previously observed in female rats.

Journal of Endocrinology (1989) 122, 725–732

Restricted access
V Viau
Search for other papers by V Viau in
Google Scholar
PubMed
Close
and
MJ Meaney
Search for other papers by MJ Meaney in
Google Scholar
PubMed
Close

Hypothalamic-pituitary-adrenal (HPA) activity is governed by glucocorticoid negative feedback and the magnitude of this signal is determined, in part, by variations in plasma corticosteroid-binding globulin (CBG) capacity. Here, in gonadectomized male rats we examine the extent to which different testosterone replacement levels impact on CBG and HPA function. Compared with gonadectomized rats with low testosterone replacement ( approximately 2 ng/ml), plasma adrenocorticotropin and beta-endorphin/beta-lipotropin responses to restraint stress were reduced in gonadectomized rats with high testosterone replacement ( approximately 5 ng/ml). Plasma CBG levels also varied negatively as a function of testosterone concentration. Moreover, glucocorticoid receptor binding in the liver was elevated by higher testosterone replacement, suggesting that testosterone acts to enhance glucocorticoid suppression of CBG synthesis. Since pituitary intracellular CBG (or transcortin) is derived from plasma, this prompted us to examine whether transcortin binding was similarly responsive to different testosterone replacement levels. Transcortin binding was lower in gonadectomized rats with high plasma testosterone replacement ( approximately 7 ng/ml) than in gonadectomized rats with low testosterone replacement ( approximately 2 ng/ml). This testosterone-dependent decrease in pituitary transcortin was associated, in vitro, with an enhanced nuclear uptake of corticosterone. These findings indicate that the inhibitory effects of testosterone on corticotrope responses to stress may be linked to decrements in plasma and intrapituitary CBG. This could permit greater access of corticosterone to its receptors and enhance glucocorticoid feedback regulation of ACTH release and/or proopiomelanocortin processing.

Free access