The neuropeptide galanin is widely distributed in the gastrointestinal tract and exerts several inhibitory effects, especially on intestinal motility and on insulin release from pancreatic beta-cells. The presence of galanin fibres not only in the myenteric and submucosal plexus but also in the mucosa, prompted us to investigate the regulatory role of galanin, and its mechanism of action, on the secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1). Rat ileal cells were dispersed through mechanical vibration followed by moderate exposure to hyaluronidase, DNase I and EDTA, and enriched for L-cells by counterflow elutriation. A 6- to 7-fold enrichment in GLP-1 cell content was registered after elutriation, as compared with the crude cell preparation (929 +/- 81 vs 138 +/- 14 fmol/10(6) cells). L-cells then accounted for 4-5% of the total cell population. Bombesin induced a time-(15-240 min) and dose- (0.1 nM-1 microM) dependent release of GLP-1. Glucose-dependent insulinotropic peptide (GIP, 100 nM), forskolin (10 microM) and the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA, 1 microM) each stimulated GLP-1 secretion over a 1-h incubation period. Galanin (0.01-100 nM) induced a dose-dependent inhibition of bombesin- and of GIP-stimulated GLP-1 release (mean inhibition of 90% with 100 nM galanin). Galanin also dose-dependently inhibited forskolin-induced GLP-1 secretion (74% of inhibition with 100 nM galanin), but not TPA-stimulated hormone release. Pretreatment of cells with 200 ng/ml pertussis toxin for 3 h, or incubation with the ATP-sensitive K+ channel blocker disopyramide (200 microM), prevented the inhibition by galanin of bombesin- and GIP-stimulated GLP-1 secretion. These studies indicate that intestinal secretion of GLP-1 is negatively controlled by galanin, that acts through receptors coupled to pertussis toxin-sensitive G protein and involves ATP-dependent K+ channels.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 561 | 217 | 81 |
PDF Downloads | 94 | 30 | 4 |