Hormonal regulation of connexin-43 in baboon corpora lutea

in Journal of Endocrinology
Authors:
FS Khan-Dawood
Search for other papers by FS Khan-Dawood in
Current site
Google Scholar
PubMed
Close
,
J Yang
Search for other papers by J Yang in
Current site
Google Scholar
PubMed
Close
, and
MY Dawood
Search for other papers by MY Dawood in
Current site
Google Scholar
PubMed
Close
Free access

Sign up for journal news

The synthesis and secretion of progesterone in the corpus luteum are regulated by both endocrine and paracrine/ autocrine factors which affect the steroidogenic cells. Evidence suggests that these cells communicate via cell-cell junctional proteins, the connexins. Previously we have shown that connexin-43 is expressed in both human and baboon (Papio hamadryus anubis) corpora lutea, with differential expression throughout luteal development, but is not detectable in corpora albicantia. We have examined the effect of human chorionic gonadotropin (hCG), oxytocin, clomiphene citrate and the anti-progesterone onapristone on expression of connexin-43 protein in the early luteal phase 1-5 days after the mid-cycle luteinizing hormone (LH) surge (LH+ 1-5 days), the mid-luteal phase 6-10 days after the LH surge (LH+ 6-10 days), and the late luteal phase 11-15 days after the LH surge (LH+ 11-15 days) in corpora lutea obtained from normal adult cycling females. Connexin-43 was localized by immunohistochemistry in cultured cells from all the three stages. Western blot analysis of the treated cells indicated the presence of two bands at 43 and 45 kDa. The band at 45 kDa was found to be phosphorylated connexin-43, indicating the presence of functional gap junctions. hCG (10 IU/ml) stimulated the expression of connexin-43 throughout luteal development; however, maximum expression occurred in the early luteal phase with a significantly greater expression of the non-phosphorylated protein. In contrast, in the mid-luteal phase, the expression of the phosphorylated protein was predominant. Oxytocin (200 mU/ml) also stimulated connexin-43 expression throughout luteal development with similar effects on the phosphorylated and non-phosphorylated protein in the early and mid-luteal phase; however, compared with hCG, oxytocin had a greater effect on mid-luteal phase connexin-43 expression. In the presence of both hCG and oxytocin, the expression of connexin-43 was significantly higher than the control only in the late luteal phase. Both clomiphene citrate and onapristone suppressed connexin-43 expression, and concomitant addition of hCG did not counteract their effect. In the context of our previous studies, it is concluded that, together with LH/hCG and the steroid hormones, oxytocin is involved in cell-cell contact-dependent communication in the corpus luteum.

 

  • Collapse
  • Expand