Estradiol/progesterone implants increase food intake, reduce hyperglycemia and increase insulin resistance in endotoxic steers

in Journal of Endocrinology
Authors:
CD McMahon
Search for other papers by CD McMahon in
Current site
Google Scholar
PubMed
Close
,
TH Elsasser
Search for other papers by TH Elsasser in
Current site
Google Scholar
PubMed
Close
,
DR Gunter
Search for other papers by DR Gunter in
Current site
Google Scholar
PubMed
Close
,
LG Sanders
Search for other papers by LG Sanders in
Current site
Google Scholar
PubMed
Close
,
BP Steele
Search for other papers by BP Steele in
Current site
Google Scholar
PubMed
Close
, and
JL Sartin
Search for other papers by JL Sartin in
Current site
Google Scholar
PubMed
Close
Free access

Sign up for journal news

High doses of lipopolysaccharide (LPS) induce transient hyperglycemia, then chronic hypoglycemia and increased insulin resistance. In addition, appetite is reduced, while body temperature and concentrations of cortisol and tumor necrosis factor alpha (TNFalpha) are elevated. Furthermore, concentrations of GH and IGF-I are reduced in cattle. The objectives of this study were to determine whether a gonadal steroid implant (20 mg estrogen and 200 mg progesterone) given to endotoxemic steers would: (1) reduce hyperglycemia, reduce hypoglycemia, reduce insulin resistance, (2) reduce changes in concentrations of GH and IGF-I, (3) reduce inappetence and reduce concentrations of blood urea nitrogen (BUN) and non-esterified fatty acids (NEFA), and (4) reduce fever and concentrations of TNFalpha and cortisol. Holstein steers were assigned within a 2x2 factorial arrangement of treatments as follows (n=5 per group): C/C, no steroid and vehicle; S/C, steroid and vehicle; C/E, no steroid and LPS (1 microg/kg body weight (BW), i.v.); S/E, steroid and endotoxin. Steroid implants were given at 20 weeks of age (day 0) and serial blood samples (15 min) were collected on day 14 for 8 h, with vehicle or LPS injected after 2 h. Intravenous glucose tolerance tests (100 mg/kg BW) were carried out at 6 h and 24 h. Hyperglycemia was 67% lower (P<0.05) in S/E- compared with C/E-treated steers between 30 and 150 min after i.v. injection of LPS. Hypoglycemia developed after 4 h and insulin resistance was greater in S/E- compared with C/E-treated steers (P<0. 05) at 6 and 24 h. Concentrations of IGF-I were restored earlier in steroid-treated steers than in controls. Concentrations of GH were not affected by steroids, but increased 1 h after injection of LPS, then were reduced for 2 h. Appetite was greater (P<0.05) in S/E- (2.1% BW) compared with C/E-treated steers (1.1% BW) (pooled s.e.m.=0.3). Concentrations of NEFA increased after injecting LPS, but concentrations were lower (P<0.05) in S/E- compared with C/E-treated steers. LPS did not affect concentrations of BUN, but concentrations were lower in steroid-treated steers. Steroids did not affect body temperature or concentrations of TNFalpha and cortisol. In summary, gonadal steroids reduce hyperglycemia, reduce inappetence and tissue wasting, but increase insulin resistance. Furthermore, concentrations of IGF-I are restored earlier in steroid-treated than in non-steroid-treated steers injected with LPS. It is concluded that gonadal steroids reduce severity of some endocrine and metabolic parameters associated with endotoxemia. However, it is unlikely that gonadal steroids acted via anti-inflammatory and immunosuppressive actions of glucocorticoids or through reducing concentrations of cytokines.

 

  • Collapse
  • Expand