Corticosterone alters insulin signaling in chicken muscle and liver at different steps

in Journal of Endocrinology

Chronic treatment with corticosterone evokes insulin resistance in chickens, a species which is already resistant to insulin compared with mammals. The in vivo effects of corticosterone on insulin signaling were investigated in chicken liver and thigh muscle in two nutritional states: basal (overnight fasted) and stimulated (30 min refeeding). Corticosterone significantly decreased specific insulin binding in liver and the amount of insulin receptor substrate-1 (IRS-1) and p85 (regulatory subunit of phosphatidylinositol (PI) 3'-kinase) in both tissues. Insulin receptor (IR) and IRS-1 mRNAs generally varied accordingly. Src homology and collagen protein (Shc) and messenger were not altered. In liver, in the basal state, the tyrosine phosphorylation of IR, IRS-1 and Shc, and the IR-associated PI 3'-kinase activity were largely decreased by corticosterone. Following refeeding the cascade was activated in control but totally inhibited in treated chickens. In muscle, as previously observed, IR and IRS-1 phosphorylation and PI 3'-kinase were not stimulated by refeeding in controls. Only the phosphorylation of Shc was increased. On this background, corticosterone decreased the basal PI 3'-kinase activity and prevented the phosphorylation of Shc in response to refeeding. In conclusion, corticosterone largely impaired insulin signaling in liver and to some extent in muscle. This should contribute to the large impairment of growth. In addition, the present studies further emphasize the peculiarities of insulin signaling in chicken muscle, which needs further investigation.

If the inline PDF is not rendering correctly, you can download the PDF file here.


      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 200 59 1
PDF Downloads 194 94 2