Administration of unmodified prolactin (U-PRL) and a molecular mimic of phosphorylated prolactin (PP-PRL) during rat pregnancy provides evidence that the U-PRL:PP-PRL ratio is crucial to the normal development of pup tissues

in Journal of Endocrinology
View More View Less

During rat pregnancy initial high concentrations of prolactin (PRL) decline by about day 9, concomitant with an increase in the ratio of unmodified to phosphorylated PRL. The physiological significance of both the decline in total PRL and the change in ratio of the two PRLs is unknown. To test the importance of each, either unmodified PRL (U-PRL) or a molecular mimic of phosphorylated PRL (PP-PRL) were continuously administered to rats throughout pregnancy. A dose of 6 microg/24 h resulted in circulating concentrations of 50 ng/ml of each administered PRL and had little effect on the pregnancy itself. After birth, pups were killed and various tissues examined. In the pup lungs, exposure to additional PP-PRL caused a reduction in epithelial integrity and an increase in apoptosis, whereas exposure to additional U-PRL had beneficial, anti-apoptotic effects. In the heart, PP-PRL caused an apparent developmental delay, whereas U-PRL promoted tissue compaction. In the blood, U-PRL increased the number of mature red blood cells at the expense of white blood cell production. Within the white blood cell population, myelopoiesis was favored at the expense of lymphopoiesis. PP-PRL, in contrast, had a less dramatic influence on the hematopoietic compartment by promoting red blood cell maturation and granulocyte production. In the thymus, exposure to PP-PRL caused accumulation of apoptotic thymocytes in enlarged glands, whereas exposure to U-PRL resulted in smaller thymi. In the spleen, exposure to U-PRL increased cellularity, with the majority of cells belonging to the erythroid series - a finding consistent with increased red blood cells in the circulation. Exposure to PP-PRL was without discernible effect. In all of these tissues, the contrasting effects of the two PRLs indicate that the absolute concentration of PRL is not crucial, but that the ratio of U-PRL to PP-PRL has a profound effect on tissue development. In brown fat, both PRL preparations decreased the number of lipid droplets. This result is therefore probably a consequence of the increase in total PRL. The results of this study attest to the importance of the U-PRL:PP-PRL ratio normally present during pregnancy and have provided clues as to the possible pathogenesis of a variety of neonatal problems.

If the inline PDF is not rendering correctly, you can download the PDF file here.


Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 49 2
PDF Downloads 223 51 1