TRH was initially found in the hypothalamus and regulates TSH secretion. TRH is also produced by insulin-containing beta-cells. Endogenous TRH positively regulates glucagon secretion and attenuates pancreatic exocrine secretion. We have previously shown that triiodothyronine (T(3)) down-regulates pre-pro-TRH gene expression in vivo and in vitro. The present study was designed to determine the initial impact of T(3) on rat TRH gene promoter and to compare this effect with that of dexamethasone (Dex). Primary islet cells and neoplastic cells (HIT T-15 and RIN m5F) were transiently transfected with fragments of the 5'-flanking sequence of TRH fused to the luciferase reporter gene. The persistence of high TRH concentrations in fetal islets in culture, probably due to transactivating factors, allowed us to explore how T(3) and Dex regulate the TRH promoter activity in transfected cells and whether the hormone effect is dependent on the cell type considered. TRH gene promoter activity is inhibited by T(3) in primary but not neoplastic cells and stimulated by Dex in both primary and neoplastic cells of islets. These findings validate previous in vivo and in vitro studies and indicate the transcriptional impact of these hormones on TRH gene expression in the pancreatic islets.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 251 | 98 | 9 |
PDF Downloads | 99 | 27 | 4 |