IGF-I has been implicated as a factor that may predispose one to prostate cancer and to benign prostatic hypertrophy (BPH). We established murine IGF-I transgenic mice under the control of rat probasin promoter and analysed the histology of the murine IGF-I-overexpressing prostate. Immunohistochemically, IGF-I was expressed in prostatic epithelial cells or basement membranes of the ventral, dorsal and lateral lobes in a line of IGF-I transgenic mice, but not in their control littermates. The anterior lobe did not express IGF-I. IGF-binding protein-3 (IGFBP-3), inhibitory to the mitogenic action of IGF-I, was detected in epithelial cells of prostatic ventral lobes, but not in those of the dorsal, lateral or anterior lobes of IGF-I transgenic mice. In controls, IGFBP-3 was not detected in epithelial cells of any prostatic lobe. Macroscopic prostatic size and the appearance of IGF-I transgenic mice were comparable with those of their control littermates of the same age. With a computed morphometric analysis, epithelial glands and intraglandular lumens in the prostatic lobes except the ventral lobe were smaller at 17 Months of age than at 14 Months both in IGF-I transgenic mice and controls. Glands and intraglandular lumens in the ventral prostatic lobes of IGF-I transgenic mice expressing more IGF-I protein in the prostate than controls were dense and enlarged similar to cysts compared with those of non-transgenic littermates without showing epithelial growth. Glands and lumens in the dorsal and lateral lobes of the IGF-I transgenic mice were also larger than controls at 14 and/or 17 Months of age. Glands in the anterior prostatic lobe of the IGF-I transgenic mice were not morphologically or morphometrically different from those of non-transgenic littermates. In conclusion, IGF-I transgenic mice under the control of rat probasin promoter showed more dense and enlarged epithelial glands in their prostatic ventral, dorsal and lateral lobes.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 353 | 251 | 14 |
PDF Downloads | 105 | 36 | 9 |