Zinc (Zn(2+)), a multifunctional micronutrient, was recently shown to lower the affinity of cell-associated insulin-like growth factor (IGF) binding protein (IGFBP)-3 and IGFBP-5 for both IGF-I and IGF-II, but to increase the affinity of the cell surface type 1 IGF receptor (IGF-1R) for the same two ligands. However, there is a need for data concerning the effects of Zn(2+) on soluble IGFBPs and the type 2 IGF receptor (IGF-2R). In the current work, we demonstrate that Zn(2+) affects the affinity of IGFBP-5 secreted by myoblasts but not IGFBP-4. Zn(2+), at physiological levels, depressed binding of both IGF-I and IGF-II to IGFBP-5, affecting (125)I-IGF-I more than (125)I-IGF-II. Both (125)I-IGF-I and (125)I-IGF-II bound to high and low affinity sites on IGFBP-5. Zn(2+) converted the high affinity binding sites of IGFBP-5 into low affinity binding sites. An IGF-I analog, (125)I-R(3)-IGF-I, did not bind to the soluble murine IGFBP-5. Zn(2+) also decreased the affinity of the IGF-2R on L6 myoblasts. In contrast, Zn(2+) increased IGF-I, IGF-II and R(3)-IGF-I binding to the IGF-1R by increasing ligand binding affinity on both P(2)A(2a)-LISN and L6 myoblasts. Soluble IGFBP-5 and IGFBP-4 depressed the binding of (125)I-IGF-I and (125)I-IGF-II to the IGF-1R, but did not affect binding of (125)I-R(3)-IGF-I. By depressing the association of the IGFs with soluble IGFBP-5, Zn(2+) partitioned (125)I-IGF-I and (125)I-IGF-II from soluble IGFBP-5 onto cell surface IGF-1Rs. This effect is not seen when soluble L6-derived IGFBP-4 is present in extracellular fluids. We introduce a novel mechanism by which the trace micronutrient Zn(2+) may alter IGF distribution, i.e. Zn(2+) acts to increase IGF-1R binding at the expense of IGF binding to soluble IGFBP-5 and the IGF-2R.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 80 | 69 | 1 |
PDF Downloads | 75 | 71 | 2 |