We studied the effect of IGF-I and insulin on intracellular Ca(2+) in primary cultured myotubes. IGF-I induced a fast and transient Ca(2+) increase, measured as fluo-3 fluorescence. This response was blocked by both genistein and AG538. IGF-I induced a fast inositol-1,4,5-trisphosphate (IP(3)) increase, kinetically similar to the Ca(2+) rise. The Ca(2+) signal was blocked by inhibitors of the IP(3) pathway. On the other hand, insulin produced a fast (<1 s) and transient Ca(2+) increase. Insulin-induced Ca(2+) increase was blocked in Ca(2+)-free medium and by either nifedipine or ryanodine. In the normal muscle NLT cell line, the Ca(2+ )signals induced by both hormones resemble those of primary myotubes. GLT cells, lacking the alpha1-subunit of dihydropyridine receptor (DHPR), responded to IGF-I but not to insulin, while GLT cells transfected with the alpha1-subunit of DHPR reacted to both hormones. Moreover, dyspedic muscle cells, lacking ryanodine receptors, responded to IGF-I as NLT cells, however they show no insulin-induced calcium increase. Moreover, G-protein inhibitors, pertussis toxin (PTX) and GDPbetaS, blocked the insulin-induced Ca(2+) increase without major modification of the response to IGF-I. The different intracellular Ca(2+) patterns produced by IGF-I and insulin may improve our understanding of the early action mechanisms for these hormones in skeletal muscle cells.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 70 | 61 | 2 |
PDF Downloads | 69 | 65 | 4 |