11β-HSD1 suppresses cardiac fibroblast CXCL2, CXCL5 and neutrophil recruitment to the heart post MI

in Journal of Endocrinology
Authors:
Katie J Mylonas University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Katie J Mylonas in
Current site
Google Scholar
PubMed
Close
,
Neil A Turner Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK

Search for other papers by Neil A Turner in
Current site
Google Scholar
PubMed
Close
,
Sumia A Bageghni Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK

Search for other papers by Sumia A Bageghni in
Current site
Google Scholar
PubMed
Close
,
Christopher J Kenyon University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Christopher J Kenyon in
Current site
Google Scholar
PubMed
Close
,
Christopher I White University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Christopher I White in
Current site
Google Scholar
PubMed
Close
,
Kieran McGregor University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Kieran McGregor in
Current site
Google Scholar
PubMed
Close
,
Robert A Kimmitt University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Robert A Kimmitt in
Current site
Google Scholar
PubMed
Close
,
Richard Sulston University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Richard Sulston in
Current site
Google Scholar
PubMed
Close
,
Valerie Kelly University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Valerie Kelly in
Current site
Google Scholar
PubMed
Close
,
Brian R Walker University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Brian R Walker in
Current site
Google Scholar
PubMed
Close
,
Karen E Porter Division of Cardiovascular & Diabetes Research, Leeds Institute of Cardiovascular & Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds, UK

Search for other papers by Karen E Porter in
Current site
Google Scholar
PubMed
Close
,
Karen E Chapman University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Karen E Chapman in
Current site
Google Scholar
PubMed
Close
, and
Gillian A Gray University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, UK

Search for other papers by Gillian A Gray in
Current site
Google Scholar
PubMed
Close

Open access

Sign up for journal news

We have previously demonstrated that neutrophil recruitment to the heart following myocardial infarction (MI) is enhanced in mice lacking 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) that regenerates active glucocorticoid within cells from intrinsically inert metabolites. The present study aimed to identify the mechanism of regulation. In a mouse model of MI, neutrophil mobilization to blood and recruitment to the heart were higher in 11β-HSD1-deficient (Hsd11b1/) relative to wild-type (WT) mice, despite similar initial injury and circulating glucocorticoid. In bone marrow chimeric mice, neutrophil mobilization was increased when 11β-HSD1 was absent from host cells, but not when absent from donor bone marrow-derived cells. Consistent with a role for 11β-HSD1 in ‘host’ myocardium, gene expression of a subset of neutrophil chemoattractants, including the chemokines Cxcl2 and Cxcl5, was selectively increased in the myocardium of Hsd11b1/ mice relative to WT. SM22α-Cre directed disruption of Hsd11b1 in smooth muscle and cardiomyocytes had no effect on neutrophil recruitment. Expression of Cxcl2 and Cxcl5 was elevated in fibroblast fractions isolated from hearts of Hsd11b1/ mice post MI and provision of either corticosterone or of the 11β-HSD1 substrate, 11-dehydrocorticosterone, to cultured murine cardiac fibroblasts suppressed IL-1α-induced expression of Cxcl2 and Cxcl5. These data identify suppression of CXCL2 and CXCL5 chemoattractant expression by 11β-HSD1 as a novel mechanism with potential for regulation of neutrophil recruitment to the injured myocardium, and cardiac fibroblasts as a key site for intracellular glucocorticoid regeneration during acute inflammation following myocardial injury.

Abstract

We have previously demonstrated that neutrophil recruitment to the heart following myocardial infarction (MI) is enhanced in mice lacking 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) that regenerates active glucocorticoid within cells from intrinsically inert metabolites. The present study aimed to identify the mechanism of regulation. In a mouse model of MI, neutrophil mobilization to blood and recruitment to the heart were higher in 11β-HSD1-deficient (Hsd11b1/) relative to wild-type (WT) mice, despite similar initial injury and circulating glucocorticoid. In bone marrow chimeric mice, neutrophil mobilization was increased when 11β-HSD1 was absent from host cells, but not when absent from donor bone marrow-derived cells. Consistent with a role for 11β-HSD1 in ‘host’ myocardium, gene expression of a subset of neutrophil chemoattractants, including the chemokines Cxcl2 and Cxcl5, was selectively increased in the myocardium of Hsd11b1/ mice relative to WT. SM22α-Cre directed disruption of Hsd11b1 in smooth muscle and cardiomyocytes had no effect on neutrophil recruitment. Expression of Cxcl2 and Cxcl5 was elevated in fibroblast fractions isolated from hearts of Hsd11b1/ mice post MI and provision of either corticosterone or of the 11β-HSD1 substrate, 11-dehydrocorticosterone, to cultured murine cardiac fibroblasts suppressed IL-1α-induced expression of Cxcl2 and Cxcl5. These data identify suppression of CXCL2 and CXCL5 chemoattractant expression by 11β-HSD1 as a novel mechanism with potential for regulation of neutrophil recruitment to the injured myocardium, and cardiac fibroblasts as a key site for intracellular glucocorticoid regeneration during acute inflammation following myocardial injury.

Introduction

Ischemic cell death associated with myocardial infarction (MI) prompts the recruitment and activation of immune cells to ensure repair (Epelman & Mann 2012, Frangogiannis 2012). Neutrophils are recruited early, removing necrotic tissue and matrix debris from the damaged myocardium (Frangogiannis 2012, Yan et al. 2013), but they are also important to ensure transition to repair. Macrophage polarization toward a reparative phenotype in the healing myocardium is promoted by neutrophil-derived gelatinase-associated lipocalin and by efferocytosis of apoptotic neutrophils (Chen et al. 2014, Horckmans et al. 2017). However, neutrophil recruitment requires tight regulation to minimize the risk of tissue damage due to release of pro-inflammatory mediators, matrix metalloproteinases and oxygen free radicals (Jordan et al. 1999, Ma et al. 2013).

Systemic glucocorticoid concentration is increased by the activation of the hypothalamic–pituitary–adrenal axis early after MI (Morrison et al. 1976). Active glucocorticoid (predominantly cortisol in man and corticosterone in rats and mice) is also regenerated within cells from intrinsically inert metabolites (cortisone and 11-dehydrocorticosterone 11-DHC) by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Cell-specific enhancement of 11βHSD1 availability by IL-1 (Tomlinson et al. 2001) and by glucocorticoid (Chapman et al. 2006) serves to locally amplify glucocorticoid action during inflammation (Sun & Myatt 2003, Chapman et al. 2013a). When 11β-HSD1 is deficient or inhibited, neutrophil-driven inflammation is increased in experimental sterile peritonitis (Gilmour et al. 2006), arthritis (Coutinho et al. 2012, Nanus et al. 2015) and carrageenan-induced pleurisy (Chapman et al. 2006, Coutinho et al. 2012). In an earlier study, we found that early neutrophil recruitment to the injured myocardium also increases in 11β-HSD1-deficient mice following induction of MI by coronary artery ligation, and this is associated with increased pro-reparative macrophage polarization and reduced detrimental remodeling (McSweeney et al. 2010). This suggests a key role for intracellular corticosteroid regeneration in regulating neutrophil recruitment to the injured heart, but the underlying mechanisms are unknown (Gray et al. 2017).

Neutrophil recruitment requires mobilization from the bone marrow to the blood in response to chemoattractant signals from injured tissue, as well as adhesion to endothelial cells and migration into the tissue. Previous studies have focused on the latter, showing that neutrophil 11β-HSD1 activity is increased during inflammation and that this activity regulates the expression of L-selectin, CD11b and annexin (Kardon et al. 2008, Coutinho et al. 2016). However, the heart releases chemoattractants that include interleukin (IL)-1 and the CXCR2-activating ELR chemokines such as CXCL1 (KC), CXCL2 (MIP-2α; macrophage inflammatory protein 2-alpha) and CXCL5 (LIX), that are essential for neutrophil recruitment after injury (Chandrasekar et al. 2001, Kobayashi 2008, Frangogiannis 2012). Recent studies have also identified growth-differentiation factor-15 (GDF-15) as a novel inhibitor of neutrophil recruitment post MI (Kempf et al. 2011). Regulation of the expression of these key molecules is a potential additional mechanism through which glucocorticoid, generated in myocardial cells by 11β-HSD1, suppresses neutrophil recruitment after injury.

11β-HSD1 is expressed by a number of cells found in the heart with the potential to release chemoattractants following injury, including cardiomyocytes (Mazancova et al. 2005), vascular smooth muscle (Hatakeyama et al. 2001), mast cells (Coutinho et al. 2013) and resident macrophages (Gilmour et al. 2006) and fibroblasts (Sun & Myatt 2003). In a recent study (White et al. 2016), we reported that 11β-HSD1 deletion in cardiac and vascular smooth muscle has no effect on chronic remodeling post MI, suggesting that these cells are not likely to be a key site for regulation of myocardial inflammation and repair.

The present study aimed to investigate whether changes in myocardial neutrophil content are accompanied by changes in neutrophil mobilization from bone marrow to the blood; whether myocardial neutrophil chemoattractant expression post MI is influenced by 11β-HSD1 availability and key cellular sites of 11β-HSD1 expression that determine neutrophil recruitment.

Materials and methods

Mice

Experiments used adult male mice with global deficiency on a C57BL/6 genetic background (Hsd11b1−/−) (Kipari et al. 2013) (Supplementary Fig. 1, see section on supplementary data given at the end of this article), with WT C57BL/6 mice used as controls. Mice with deletion targeted to vascular smooth muscle and cardiomyocytes (White et al. 2016)(Hsd11b1fl/flSm22α-Cre+; Hsd11b1CVCre+) were generated by crossing Sm22α-Cre mice with Hsd11b1fl/fl mice, homozygous for a ‘floxed’ allele of Hsd11b1 (generated by Artemis Pharmaceuticals, Cologne, Germany), directly onto a C57BL/6J background. LoxP sites flanked exon 3 of the mouse Hsd11b1 gene. Excision of this exon results in a ‘null allele’ by ‘out-of-frame splicing’ from exon 2 to exon 4. Controls were Hsd11b1fl/fl (Cre−; Hsd11b1CVCre−) littermates.

Male mice (6–14 weeks old) were bred and maintained in conventional barrier unit facilities at the University of Edinburgh. Experimental and control mice, WT or Cre− littermates (Hsd11b1CVCre), were age matched. All animal work was compliant with IACUC guidelines, conducted in accordance with the UK Government Animals (Scientific Procedures) Act 1986 and was approved by the University of Edinburgh Animal Welfare and Ethical Review Board.

Generation of chimeric mice

Chimeric mice were created by exposing WT and Hsd11b1−/− mice to a single lethal dose of 10.5 Gy radiation. This was followed by i.v. injection of 1 × 107 donor bone marrow cells harvested from the femurs and tibias of WT or Hsd11b1−/− mice. To control for the effects of irradiation, ‘irradiation control’ animals were generated wherein WT recipients received WT bone marrow. In ‘host KO’ animals, Hsd11b1−/− recipients received WT donor cells, so that all quickly dividing cells prone to radiation, including bone marrow leucocytes, were replaced by cells with a WT phenotype, but host cells were Hsd11b1 deficient. In ‘BMKO’ animals, WT recipients received Hsd11b1−/− bone marrow, resulting in Hsd11b1−/− neutrophils and WT radio-resistant host tissue. Chimeric animals were housed under pathogen-free conditions in individually ventilated cages and given Baytril antibiotic (2.5%) in the drinking water for 1 week before and 4 weeks after bone marrow transplantation. Chimeras were allowed to recover for 8 weeks before appropriate reconstitution was confirmed by flow cytometry of tail vein blood and CAL surgery was performed.

Coronary artery ligation (CAL) surgery

CAL surgery for induction of myocardial infarction was carried out as we have previously described (White et al. 2016). Mice were anesthetized with isoflurane (2%), which was maintained for the length of the procedure, and received appropriate analgesia (buprenorphine 0.05 mg/kg s.c. before surgery and 24 h later). The trachea was intubated and the lungs were ventilated mechanically at 120 strokes/min. The left thorax was opened at the fourth intercostal space, before the left descending coronary artery ligated with a 6.0-prolene suture. After closing the thorax, animals received oxygen in the absence of anesthesia until fully conscious.

Plasma troponin measurement

Tail vein blood was collected from mice 24 h post CAL surgery, following administration of analgesic (buprenorphine 0.05 mg/kg s.c.), into 10 mM sodium citrate buffer and centrifuged at 2400 g for 10 min at 4°C to produce a plasma phase. Cardiac Troponin I (Tn-I) was measured in the plasma using the mouse high-sensitivity Tn-I ELISA kit according to the manufacturers instructions (Life Diagnostics, Staffordshire, UK).

Tissue collection and immunohistochemistry

Mice were terminally anesthetized with saline containing ketamine at 50 mg/kg and medetomidine at 0.5 mg/kg by i.p. injection. Hearts were perfusion fixed by infusing heparinized saline (10 IU/mL heparin), and then 10% formalin at physiological pressure (100 mmHg) via the abdominal aorta. Hearts were placed in 10% formalin overnight before processing to wax and paraffin embedding for GR1+ immunohistochemistry (IHC; antibody used in Table 1) as described previously (McSweeney et al. 2010). For quantification, sections were tiled at ×40 magnification (Image Pro6.2, Stereologer Analyser 6 MediaCybernetics). The % area stained with the GR1 antibody (dark brown) was calculated within the infarct and border area.

Table 1

Antibodies.

Name and clone Conjugate Dilution Supplier and cat #
Primary antibodies
 Rat anti-mouse Gr1 (Ly6G and Ly6C) None 1:100 BD Pharmingen #550291
 Clone RB6-8C5
 Mouse anti-mouse CD45 PE Cy7 1:100 Biolegend #109830
 Clone 105
 Rat anti-mouse CD11b Alexafluor 700 1:100 Biolegend #101222
 Clone M1/70
 Rat anti-mouse Ly6G Pacific Blue 1:100 Biolegend #127612
 Clone 1A8
 Rat anti-mouse CXCR4 Alexafluor 647 1:100 Biolegend #129201
 Clone TG12/CXCR4
 Anti-mouse CXCR2 PerCp cy5.5 1:100 Biolegend #129103
 Clone TG11/CXCR2
 Sheep anti-mouse 11β-HSD1 None 1:100 In house
Secondary antibodies
 Rabbit anti-rat IgG Biotin 1:200 Vector # BA4001
 Donkey anti-sheep Alexa Fluor 488 1:100 Abcam # ab150177

Corticosterone radioimmunoassay

Plasma corticosterone at the diurnal nadir, one day post surgery, was measured by radioimmunoassay as described previously (Kotelevtsev et al. 1997).

Flow cytometry of blood and bone marrow cells

Mice were killed by cervical dislocation, and bone marrow cells were harvested by flushing the femur and tibia with phosphate buffered saline (PBS; Thermo Fisher) as described previously (Kipari et al. 2013). Erythrocytes were lysed (red blood cell lysis buffer; Sigma-Aldrich). 0.5 × 106 singly-suspended cells were then blocked with 10% mouse serum for 20 min on ice, and then incubated for 30 min on ice with appropriate dilutions of antibodies of interest (Table 1) in PBS containing 10% mouse serum. Blood was collected in 10 mM sodium citrate buffer and antibodies were added directly to the blood. Intracellular staining of 11β-HSD1 in blood neutrophils was carried out as described previously (De Sousa Peixoto et al. 2008). Cells were fixed and permeabilized using a kit (Fix and Perm, Invitrogen; Thermo Fisher) to facilitate intracellular immunostaining of 11βHSD1. Cells were then washed in PBS before acquisition and analysis (BD FACS LSR Fortessa and FlowJo software; Oregon, USA). The gating strategy for analyzing blood neutrophils is shown in Supplementary Fig. 2.

Fibroblast isolation post MI

Mice were terminally anesthetized with saline containing ketamine at 50 mg/kg and medetomidine at 0.5 mg/kg by i.p. injection. Heart tissue was digested before fibroblast isolation. Briefly, infarct and surrounding border heart tissues were chopped into small pieces and digested in collagenase D and DNase 1 (2.5 mg/mL collagenase D; 60 U/mL DNAse 1; Ambion) in HBSS (GIBCO; Thermo Fisher) at 37°C for 30 min following dissociation by gentleMacs Dissociator (according to manufacturer’s instructions; Miltenyi; Surrey, UK). The digested tissue was gently disaggregated and filtered through a 30 µm cell strainer to remove larger cells (including cardiomyocyes). Cells were then centrifuged at 300 g for 5 min and washed in PBS. Cardiac fibroblasts were isolated magnetically using a Miltenyi neonatal cardiac fibroblast isolation kit (MACS), according to manufacturer’s instructions.

Three cellular fractions were produced from this isolation method (Fractions 1–3). These were characterized by qPCR (Supplementary Fig. 4) and flow cytometry using specific cellular markers. Flow cytometry analysis revealed that Fraction 1 contained the highest levels of CD45 and platelet endothelial cell adhesion molecule (Pecam1; CD31; data not shown) suggesting enrichment for leukocytes (Nakano et al. 1990) and endothelial cells, respectively (Newman 1997), and this was confirmed by qPCR analysis (Supplementary Fig. 4). Fraction 2 highly expressed the fibroblast markers Discoidin domain receptor 2 (Ddr2; Supplementary Fig. 4) and type 1 collagen A1 (Col1a1; Supplementary Fig. 4), suggesting that it was enriched for fibroblasts. Fraction 3, which highly expressed Thy1 cell surface antigen (Thy-1; CD90), was also positive for the cardiac fibroblast markers Ddr2 and Col1a1 (Supplementary Fig. 4). In the heart, DDR2 is the most specific marker of cardiac fibroblasts (Camelliti et al. 2005). Thy1 is only expressed by a subset of fibroblasts (Willis et al. 1994). All isolated Ddr2 and Col1a1 (Ddr2+Col1a1+)-expressing cells (Fractions 2; Thy1low and 3; Thy1high) were considered enriched for fibroblasts, and Fraction 1 enriched for leukocytes and endothelial cells. These cellular fractions from WT and Hsd11b1−/− mice were analyzed by qPCR for the production of various genes of interest (Table 2). qPCR data were also analyzed on fractions enriched for both Thy1low and Thy1high fibroblasts from WT mice alone post MI (Supplementary Fig. 5).

Table 2

Applied Biosystems gene expression arrays used.

Gene name TAQman gene expression array
Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) Mm99999915_gl
CXCL1 (Cxcl1) Mm004207460_m1
NLRP3 (Nlrp3) Mm04210225_m1
Chemokine (C-C motif) ligand 3 (Ccl3) Mm00441259_g1
L-selectin Mm00441291_m1
CXCL5 (Cxcl5) Mm004 36451_g1
Interleukin (IL-)1β (Il1b) Mm00434228_m1
IL-6 (Il6) Mm00446190_m1
CXCL2 (Cxcl2) Mm00436450_m1
Growth differentiation factor 15 (Gdf15) Mm00442228_m1
CXCL12 (Cxcl12) Mm00445553_m1
11βHSD1 (Hsd11b1) Mm 00476182_m1
Thy1 (Yhy1) Mm00493682_g1
CD31 (Pecam1) Mm01242584_m1
DDR2 (Ddr2) Mm00445615_m1
Col1a1 (Col1a1) Mm00801666_g1

Cardiac fibroblast culture

Mice were killed by exposure to increasing concentrations of CO2. Cardiac fibroblasts were collected from hearts by collagenase digestion and cultured as described previously for human cells (Turner et al. 2003). Briefly, ventricular tissue from 6- to 8-week-old mice was washed in PBS, and then minced with scissors and digested by adding Worthington Type II collagenase (600 IU/mL) for 90 min with occasional shaking at 37°C. After centrifugation of the suspension, the cells were washed twice in DMEM cell culture medium, before seeding cells into a T25 tissue culture flask. Non-adherent cells were removed after 30 min, and the remaining cells were incubated with full growth medium (DMEM + 10% FCS; Thermo Fisher) overnight. The next day, cells were washed twice with PBS to remove any residual blood cells before the addition of fresh growth medium. For experiments, cells at passages 1–2 were plated into 6-well plates and serum-starved overnight before incubation for 24 h with medium containing 1 ng/mL IL-1α together with 200 nM corticosterone, 200 nM 11-dehydrocoticosterone (11-DHC; inert form) or ethanol (vehicle control). Conditioned media were collected for ELISA analysis. RNA was extracted from cell pellets and cDNA synthesized for qPCR as described (Turner et al. 2007) (TaqMan gene expression arrays; Table 2).

Chemokine quantification from fibroblast culture supernatant

ELISAs for CXCL2 and CXCL5 in conditioned media from fibroblast cultures were carried out according to manufacturer’s instructions (R&D Systems).

RNA extraction and quantitative PCR (qPCR)

RNA was extracted from bone marrow, cardiac left ventricular/infarct tissue or fibroblast cell fractions using the TRIzol method (according to manufacturers instructions; Thermo Fisher), and this was then reverse transcribed to cDNA (Applied Biosystems high-capacity cDNA reverse transcription kit or Promega reverse transcription system). TaqMan gene expression arrays (Applied Biosystems) were used to quantify mRNA expression of genes (Table 2). Results were normalized for GAPDH expression and presented as fold increases over average control level analyzed in parallel, unless otherwise stated.

Statistical analyses

All values are expressed as mean ± s.e.m. Unpaired Student’s t-test or ANOVA with Newman–Keuls post-hoc test were used for analysis. P values <0.05 denote statistical significance, *P < 0.05, **P < 0.01, ***P < 0.005.

Results

Global deletion of Hsd11b1 enhances neutrophil mobilization to blood and recruitment to the heart after MI, without changing infarct injury or plasma corticosterone concentration

Deletion of 11β-HSD1 in the hearts of Hsd11b1/ mice was confirmed by qPCR (Supplementary Fig. 1A) and Western blot (Supplementary Fig. 1B). After induction of MI, initial cardiac damage was similar in WT and Hsd11b1/ mice as measured by the concentration of troponin I in tail blood collected 24 h post injury (Supplementary Fig. 1C). Analysis of hearts collected from these mice showed that Gr-1 immunoreactive neutrophil content in the infarct and border of Hsd11b1/ mice was significantly higher than that of WT (Fig. 1A and B; P < 0.05), confirming our previous observations (McSweeney et al. 2010). Flow cytometry revealed that blood from Hsd11b1/ mice also contained significantly more neutrophils (CD45+CD11b+Ly6G+cells; Supplementary Fig. 2) post MI compared to WT (Fig. 1C, P  < 0.05). Plasma corticosterone concentration in morning blood samples was increased to similar levels in WT and Hsd11b1/ mice 24 h after induction of MI (Fig. 1D), excluding this as a contributing factor to alteration in neutrophil mobilization or recruitment.

Figure 1
Figure 1

Increased neutrophil mobilization and recruitment to the heart in Hsd11b1/ mice post MI. (A) Representative images of Gr-1 IHC of day 2 infarcted hearts from both WT (left) and Hsd11b1/ mice (right). (B) Analysis of the % Gr-1+ immunostaining in infarct and border regions of heart sections from Hsd11b1/ vs WT animals (n = 7/5). (C) Neutrophil numbers in the blood of WT vs Hsd11b1/ mice measured by flow cytometry at 1 day post MI (n = 4/3). (D) Plasma corticosteroid levels were raised post MI and did not differ between WT and Hsd11b1/ mice (n = 7/6; dashed line represents level for naïve C57BL/6 mice, approx. 50–100 ng/mL). *P < 0.05.

Citation: Journal of Endocrinology 233, 3; 10.1530/JOE-16-0501

Increased neutrophil mobilization to blood is associated with reduced neutrophil expression of CXCR4, but not CXCR2, on bone marrow and blood neutrophils

To investigate whether increased mobilization of neutrophils to the blood of Hsd11b1/ mice could be explained by changes in the expression of receptors determining retention or mobilization in the bone marrow, the surface expression of CXCR2 and CXCR4 on neutrophils was determined by flow cytometry. The surface expression of CXCR4, a receptor involved in bone marrow retention of neutrophils (Eash et al. 2010), was found to be reduced on bone marrow neutrophils collected from Hsd11b1/mice after MI (Supplementary Fig. 3A; P < 0.05), but there was no change in surface expression of the receptor determining mobilization, CXCR2 (Supplementary Fig. 3C). Gene expression of Cxcl12 (SDF-1), the primary ligand for CXCR4, was not modified in the bone marrow of Hsd11b1/ compared with WT (Supplementary Fig. 3B).

Increased neutrophil mobilization to blood depends on the absence of Hsd11b1 gene expression in host, not donor bone marrow-derived, cells in bone marrow chimeric mice

To investigate whether increased mobilization of neutrophils to the blood results from direct effects of Hsd11b1 deletion in neutrophils, bone marrow chimeric mice with Hsd11b1 deletion in either donor bone marrow cells (BMKO) or in host cells (Host KO) were prepared. For irradiation controls, WT bone marrow was transferred into irradiated WT hosts. Flow cytometric analysis of intracellular 11β-HSD1 protein in blood neutrophils confirmed appropriate removal. Irradiation control and Host KO neutrophils were positive for 11β-HSD1 expression, but BMKO neutrophils did not express this protein (dashed box; Fig. 2A). In these bone marrow chimeric mice, neutrophil mobilization to the blood was increased relative to irradiation control mice in host KO animals post MI (Fig. 2B; P < 0.05), but not in BMKO mice (Fig. 2B). These data suggest that it is Hsd11b1 in a component of the host tissue, rather than in bone marrow-derived cells, that determines increased mobilization of neutrophils to the blood following MI.

Figure 2
Figure 2

Absence of gene expression in host cells in bone marrow chimera causes increased neutrophil mobilization but targeted deletion of Hsd11b1/ in smooth muscle cells and cardiomyocytes does not affect neutrophil mobilization or recruitment post MI. Flow cytometric analysis confirms appropriate presence or absence of 11β-HSD1 in the neutrophils of chimeric mice (A). Blood neutrophil numbers were measured in chimeric mice (B; n = 7/6/6, P < 0.05). (C) Neutrophils present in the heart 2 days post MI in control (Hsd11b1CVCre−) vs experimental animals (Hsd11b1CVCre+). (D) Analysis of blood neutrophil numbers in control (Hsd11b1CVCre−) vs experimental animals (Hsd11b1CVCre+) at 1 day post MI. n = 4/4.

Citation: Journal of Endocrinology 233, 3; 10.1530/JOE-16-0501

11β-HSD1 deletion in cardiomyocytes and vascular smooth muscle cells does not influence neutrophil mobilization or accumulation in the myocardium

Cardiomyocytes and vascular smooth muscle are key sites of 11β-HSD1 expression in the heart. To investigate whether 11β-HSD1 activity here might account for enhanced neutrophil mobilization to the blood and recruitment to the heart, MI was induced in mice with targeted deletion of Hsd11b1 in smooth muscle and cardiomyocytes (White et al. 2016). However, floxed control, Hsd11b1CVCre− and Hsd11b1CVCre+ mice all had similar numbers of neutrophils in the heart (Fig. 2C) and blood (Fig. 2D) following coronary artery ligation.

11β-HSD1 deletion increases cardiac expression of a subset of neutrophil chemoattractant genes after MI

To investigate potential mediators of increased neutrophil recruitment to the heart, expression of a panel of genes encoding molecules known to regulate neutrophil recruitment was assessed in the left ventricle of hearts from Hsd11b1−/− and WT mice. Cardiac expression levels of genes encoding the neutrophil chemoattractants Cxcl1 (KC) and Ccl3 (MIP-1α), as well as the inflammasome Nlrp3, and the adhesion molecule, L-selectin were all increased in hearts collected after MI relative to control hearts, but expression of these genes was not modified in hearts from Hsd11b1−/− mice relative to WT (Fig. 3A; P < 0.05). Expression of the neutrophil inhibitory peptide Gdf-15 was also increased post MI, consistent with previous observations (Kempf et al. 2011), but was not modified in hearts from Hsd11b1−/− mice relative to WT (Fig. 3B). In contrast, expression of genes encoding Cxcl2 (MIP-2α), Cxcl5 (LIX), Il1b (IL-1β) and Il6 (IL-6) was increased in the heart after MI and further increased in hearts from Hsd11b1/ mice compared to WT mice (Fig. 3C).

Figure 3
Figure 3

Inflammatory cytokines and chemokines involved in neutrophil recruitment increase in the heart post MI. qPCR was carried out on infarct and border cardiac tissue from WT or Hsd11b1/ mice 24 h post MI and compared to naïve WT ventricular tissue. (A) Cxcl1, NLRP2, Ccl3 and the adhesion molecule, L-selectin, increased in infarcted tissue compared to naïve myocardium but did not differ between WT and Hsd11b1/ infarcts. (B) Expression of the neutrophil inhibitory peptide Gdf-15 was not modified in hearts from Hsd11b1/ mice. (C) Cxcl2, Cxcl5, Il1b and Il6 were all expressed to a greater extent in Hsd11b1/ than in WT infarct tissue. (C) *P < 0.05, **P < 0.01, ***P < 0.005. In representative experiments shown, n = 4/3, norm., normalized to GAPDH.

Citation: Journal of Endocrinology 233, 3; 10.1530/JOE-16-0501

Cxcl2 and Cxcl5 expression is increased in fibroblasts isolated from infarcted hearts of mice deficient in 11β-HSD1

Cardiac fibroblasts express 11β-HSD1 (Furtado et al. 2014) and as ‘host’ cells in bone marrow chimera mice, it was reasoned that fibroblasts were a potential site for regulation of neutrophil chemoattractant expression in the infarcted heart. Three cellular fractions were isolated by magnetic bead separation (see ‘Materials and methods’ section and Supplementary Fig. 4) from the infarct and infarct border of hearts from WT and Hsd11b1/ mice collected 24 h post MI. Cxcl2 was found to be preferentially expressed in the Ddr2+Col1a1+Thy1high fibroblast fraction from WT hearts (Fraction 3; Supplementary Fig. 5A; P < 0.01), and expression was increased 10-fold in this cellular fraction when isolated from hearts of Hsd11b1/ mice (Fraction 3; Fig. 4A; P < 0.05). Cxcl5 was preferentially expressed by Ddr2+Col1a1+Thy1low fibroblast fraction (Fraction 2; Supplementary Fig. 5B; P < 0.005) and expression was significantly increased in fibroblasts isolated from hearts of Hsd11b1/ mice relative to WT after MI (Fig. 4B; P < 0.01). Hsd11b1 was expressed in both fibroblast subsets following MI (Supplementary Fig. 6). Il-1 and Il-6 were expressed in Fraction 1 containing CD45+ leucocytes and CD31+ve endothelial cells, as well as in fibroblasts, but expression levels did not differ between WT and Hsd11b1/ animals in any fraction (Fig. 4C and D).

Figure 4
Figure 4

Cardiac fibroblasts express Cxcl2 and Cxcl5 post MI, which increase in the absence of intracellular glucocorticoid regeneration. qPCR analysis of Cxcl2 (A) and Cxcl5 (B), IL1b (C) and IL-6 (D) performed on RNA isolated from the cellular fractions 1–3 (Supplementary methods) in WT vs Hsd11b1/ mice. *P < 0.05, **P < 0.01, n = 5–6 per group.

Citation: Journal of Endocrinology 233, 3; 10.1530/JOE-16-0501

11β-HSD1 regulates the expression of Cxcl2 and Cxcl5 by cardiac fibroblasts in vitro

To confirm a role for glucocorticoid regeneration in regulating chemokine expression in cardiac fibroblasts, fibroblasts were isolated from the hearts of WT mice, cultured in vitro and activated by exposure to IL-1α for 24 h (Fig. 5). IL-1 induced an increase in the expression of Cxcl2 and Cxcl5 genes in cardiac fibroblasts (Fig. 5A) that was accompanied by increased secretion of CXCL2 and CXCL5 protein into the culture medium bathing these cells (Fig. 5C and D). Administration of corticosterone (200 nM) or of 11-dehydrocorticosterone (11-DHC; 200 nM), the product and substrate of 11β-HSD1, respectively, suppressed IL-1α-induced gene expression of Cxcl2 and Cxcl5 (Fig. 5B) and tended to reduce protein release (Fig. 5C and D). Although expression of Il6 was not modified in fibroblasts freshly isolated from the heart, it was significantly increased by IL-1α in cultured cells, and this was suppressed by corticosterone and 11-DHC (Fig. 5E).

Figure 5
Figure 5

Cultured cardiac fibroblast expression of Hsd11b1, Cxcl2, Cxcl5 and Il-6 in the presence or absence of IL-1α ± Cort or DHC. (A) qPCR analysis of Cxcl2 and Cxcl5 in cardiac fibroblasts cultured in the presence or absence of IL-1α for 24 h. (B) qPCR carried out on cardiac fibroblasts in the presence or absence of IL-1α ± corticosterone (Cort) or 11-DHC, expressed as fold change over IL-1α treatment alone. Protein production of CXCL2 (C) and CXCL5 (D) in the supernatants as measured by ELISA. (E) The influence of IL-1α ± corticosterone (Cort) or 11-DHC on expression of Il-6 by cultured mouse cardiac fibroblasts. *P < 0.05, **P < 0.01, ***P < 0.005. n = 3–5 per group.

Citation: Journal of Endocrinology 233, 3; 10.1530/JOE-16-0501

Discussion

Neutrophils are rapidly recruited to the heart following injury and are required for tissue repair (Frangogiannis 2012, Yan et al. 2013), but regulation is essential as excessive or prolonged recruitment can result in increased tissue damage and impaired repair (Jordan et al. 1999, Ma et al. 2013). The results from the present study identify suppression of myocardial CXCL2 and CXCL5 chemoattractant expression by 11β-HSD1 as a novel mechanism with potential for regulation of neutrophil recruitment to the injured myocardium following infarction. Furthermore, the data indicate that cardiac fibroblasts are a key site for glucocorticoid regeneration by 11β-HSD1 during acute inflammation following myocardial injury.

Glucocorticoids, released acutely from the adrenal glands after MI, not only have direct anti-inflammatory effects, but also promote intracellular glucocorticoid regeneration from inert metabolites that enter cells from the circulation, thus amplifying their effects specifically in cells that express 11β-HSD1 (Chapman et al. 2013a, Gray et al. 2017). In the present study, systemic glucocorticoid was increased to the same extent in mice with and without 11β-HSD1 after MI; yet, in agreement with our previous observation (McSweeney et al. 2010), neutrophil recruitment to the heart was increased in the absence of 11β-HSD1. 11β-HSD1 deficiency or pharmacological inhibition similarly enhances neutrophil recruitment in other models of sterile inflammation, including arthritic joints, and in sterile peritonitis (Coutinho et al. 2012, Chapman et al. 2013b). Thus, intracellular regeneration of glucocorticoid in cells that express 11β-HSD1 promotes mechanisms that restrain neutrophil recruitment during inflammation.

Neutrophils express Hsd11b1 and expression is increased as they are recruited to sites of inflammation (Kardon et al. 2008, Coutinho et al. 2016). Alteration in the expression of neutrophil adhesion molecules, including L-selectin, was identified as a mechanism associated with increased neutrophil recruitment that accompanies pharmacological inhibition of 11β-HSD1 in peritonitis (Coutinho et al. 2016). Such a mechanism could be involved in the post-MI heart, although expression of L-selectin was unchanged in hearts from Hsd11b1−/− mice relative to WT. Increased neutrophil content of myocardium post MI was matched by increased blood neutrophil numbers. Bone marrow neutrophils express 11β-HSD1 at a higher level during inflammation (Coutinho et al. 2016), and we considered the possibility that this could influence neutrophil egress from the bone marrow. Egress is regulated by the balance between the actions of release signals (e.g. CXCL1, CXCL5) interacting with neutrophil CXCR2 and pro-retention signals in the bone marrow, particularly CXCL12 interacting with CXCR4 (Eash et al. 2010). Flow cytometry revealed that CXCR2 on bone marrow neutrophils from Hsd11b1−/− mice post MI was not changed relative to WT but that expression of CXCR4 was reduced. Glucocorticoids upregulate CXCR4 expression on eosinophils and T-lymphocytes (Wang et al. 1998, Nagase et al. 2000), and this result suggests that glucocorticoid regenerated through 11β-HSD1 could engage a similar mechanism in neutrophils. However, in bone marrow chimeric mice, blood neutrophil numbers were increased in mice with ‘host’ knockout of Hsd11b1, but not in mice with bone marrow cell knockout of 11β-HSD1. Therefore, although an influence of neutrophil 11β-HSD1 activity cannot be excluded, activity in ‘host’ cells seem to be more central to the promotion of neutrophil mobilization after MI. This could include the non-myeloid component of the bone marrow itself and, although 11β-HSD1 failed to influence the expression of the retention factor CXCL12 in the bone marrow stroma, this merits further investigation.

The heart releases a number of CXCR2 ligands in response to injury (Frangogiannis 2012) and myocardial cells that express 11β-HSD1 likely represent a key ‘host’ component associated with the promotion of neutrophil mobilization post MI. Investigation of neutrophil chemoattractant expression revealed that while a number of these molecules, including Cxcl1/KC, were expressed at a higher level in the heart after MI, only a subset, including Cxcl2 and Cxcl5, IL-1 and Il-6 were further increased in hearts from Hsd11b1/ mice. Transfer of bone marrow from Hsd11b1/ mice replaced myeloid components of the myocardium without altering neutrophil mobilization, suggesting that any alteration in gene expression relevant to this outcome is in non-myeloid cells of the heart. These cells include cardiomyocytes (Mazancova et al. 2005), smooth muscle cells (Hatakeyama et al. 2001) and fibroblasts (Sun & Myatt 2003). 11β-HSD1 enzyme activity is not detectable in endothelial cells (Christy et al. 2003, Dover et al. 2007). Neither mobilization to blood nor recruitment to the heart were increased following MI in mice with targeted deletion of Hsd11b1 in smooth muscle cells and cardiomyocytes, ruling out 11β-HSD1 in these cells as being key in the regulation of neutrophil recruitment. This is consistent with our previous observations that Hsd11b1 deletion in these cells did not influence angiogenesis or the development of heart failure following MI (White et al. 2016).

Fibroblasts are abundant in the heart (Shinde & Frangogiannis 2014). They have immunomodulatory roles in many sites of the body (Smith et al. 1997, Silzle et al. 2004) regulating the types and functions of leukocytes recruited (Silzle et al. 2004). Cardiac fibroblasts secrete immunoactive molecules (Turner et al. 2011, Shinde & Frangogiannis 2014) and express 11β-HSD1 particularly highly (Furtado et al. 2014). In synovial fibroblasts 11β-HSD1 activity results in the suppression of inflammation associated with arthritis (Hardy et al. 2006, Hardy et al. 2008, Ahasan et al. 2012). To investigate whether 11β-HSD might have this role in the heart, Ddr2+Col1a1+ fibroblasts were isolated from the mouse heart post MI. Cardiac fibroblasts expressed varying levels of Thy1 and, interestingly, Cxcl2 expression was specifically increased in Thy1high fractions, whereas Cxcl5 expression was increased in the Thy1low fibroblast-enriched fraction. Hsd11b1 expression was confirmed in both fractions (Fig. 6). Pro-inflammatory cytokines downregulate fibroblast Thy1 expression (Hagood et al. 2005), and differences in cell expression may indicate subsets that have been exposed to different levels of cytokine or are in different states of activation in the healing infarct. Like Cxcl2 and Cxcl5, Il1b and Il6 expression was increased more in hearts from Hsd11b1−/− mice after MI. Cultured human cardiac fibroblasts produce IL-1 and IL-6 in culture (Turner et al. 2007) and 11β-HSD1 was able to regulate the expression of Il6 in cultured mouse cardiac fibroblasts in this study, as it does in cultured fibroblasts from other tissues (Hardy et al. 2006). However, there was no evidence for specific regulation of Il1 or Il6 expression by 11β-HSD1 in fibroblasts freshly isolated from the infarcted heart. This could reflect differences in the environment and in fibroblast phenotype in situ in the heart 24 h after induction of MI, compared to culture conditions. In fact, expression of Il1b and Il6 in the cell fraction containing CD45+ve cells suggests that increased representation of mRNA from the increased number of recruited inflammatory cells in Hsd11b1−/− relative to WT hearts is more likely to account for their higher expression in intact hearts from Hsd11b1−/− mice.

Figure 6
Figure 6

Schema for the regulation of neutrophil recruitment to the heart by 11β-HSD1. (A) Chemokines produced by fibroblasts in response to pro-inflammatory cytokines recruit neutrophils to the heart post MI (1). Thy1high and Thy1low cardiac fibroblasts preferentially produce CXCL2 and CXCL5, respectively (2). 11β-HSD1 catalyzes the regeneration of local glucocorticoid, dampening chemokine expression (3). Circulating corticosterone and IL-1α from necrotic cardiomyocytes increase 11β-HSD1 expression (4). (B) In the absence of 11β-HSD1, fibroblasts are driven to produce excess CXCL2 and CXCL5 (5), unleashed due to the lack of dampening local glucocorticoid (6), driving increased neutrophil recruitment to the infarcted heart (7).

Citation: Journal of Endocrinology 233, 3; 10.1530/JOE-16-0501

IL-1α is induced early after ischemic injury in the heart, particularly by necrotic cardiomyocytes (Fig. 6) (Lugrin et al. 2015), and IL-1 receptor signaling is hypothesized to be critically important in regulating inflammatory pathways in the healing infarct, including promotion of pro-inflammatory cytokine release (Turner 2014). In cultured murine cardiac fibroblasts stimulated with IL-1α, provision of either corticosterone or 11-dehydrocorticosterone, the substrate for 11β-HSD1, decreased Cxcl2 and Cxcl5 expression, consistent with the regulation of gene expression secondary to 11β-HSD1 activity in these cells (Fig. 6). Cxcl2 expression is known to be repressed by GR activation (Uhlenhaut et al. 2013), and Cxcl5 was first described in mouse fibroblasts as a glucocorticoid-attenuated response gene (GARG) (Smith & Herschman 1996). Importantly, dampening of CXCL2 (Montecucco et al. 2013) and of CXCL5 (Chandrasekar et al. 2001) is known to reduce neutrophil-mediated tissue injury post MI. In future, it may be of value to further investigate the specific role of stromal cells in regulating neutrophil recruitment via these mediators, for example using an in vitro co-culture system (Munir et al. 2016).

Suppression of neutrophil recruitment is likely to be beneficial in terms of limiting acute injury to the myocardium, particularly following reperfusion. However, neutrophils secrete gelatinase-associated lipocalin that promotes macrophage polarization toward a pro-repair phenotype (Chen et al. 2014, Horckmans et al. 2017) and acquisition of this phenotype is also enhanced by efferocytosis of apoptotic neutrophils (Chen et al. 2014). Macrophage polarization toward a reparative ‘M2’ phenotype is enhanced in 11βHSD1-deficient mice during wound healing (McSweeney et al. 2010), and this associates with improved long-term functional outcome (White et al. 2016). Thus, early promotion of neutrophil recruitment to the myocardium may contribute to enhancement of tissue repair when 11β-HSD1 activity is lost. Alternatively, changes in the fibroblasts secretome under the influence of 11β-HSD1 may directly influence macrophage polarization status. While these data are supportive of cardiac fibroblasts as a key site for regulation of acute inflammation following myocardial injury, this mechanism needs to be more thoroughly tested in mice with fibroblast specific Hsd11b1 deletion. Targeting Cre-Lox-mediated gene deletion specifically to fibroblasts has proved difficult in the past due to the lack of sufficiently selective Cre− mouse lines. However, Col1a2 Cre has recently been applied successfully to target fibroblasts during myocardial infarct healing (Duan et al. 2012), and in future, this approach will provide a means for testing the importance of Hsd11b1 in fibroblasts, and other mesenchymal cells, post MI.

In conclusion, these data are consistent with a novel role for 11β-HSD1 in the regulation of acute inflammation following MI, via suppression of CXCL2 and CXCl5 chemoattractant expression and are supportive of cardiac fibroblasts as a key site for glucocorticoid regeneration by 11β-HSD1 following myocardial injury.

Supplementary data

This is linked to the online version of the paper at http://dx.doi.org/10.1530/JOE-16-0501.

Declaration of interest

K J M, N A T, S A B, C J K, C I W, K M, R K, R S, V K, K E P, K E C and G A G have nothing to declare. B R W is an inventor on relevant patents owned by the University of Edinburgh and licensed to Actinogen Medical.

Funding

This work was supported by the Wellcome Trust (Wbib91720MA and Wbib83184) and British Heart Foundation 4-year PhD studentship to C W (FS/09/053). The Centre for Cardiovascular Science is supported by a British Heart Foundation Centre of Research Excellence Award. S A B is supported by British Heart Foundation project grant (PG/11/110/29248) awarded to N A T and K E P.

Author contribution statement

G A G and K J M conceived, designed the experiments and wrote the manuscript. K J M carried out the experiments and analyzed the data. N A T, S A B, C J K, C I W, K M, R A K, R S, V K and K E P contributed to the experiments. B R W and K E C reviewed the manuscript.

Acknowledgements

The authors are grateful to Janet (Tak Yung) Man and staff at the University of Edinburgh Biomedical Research Resources facility for the generation of mice and assistance with animal care.

References

  • Ahasan MM, Hardy R, Jones C, Kaur K, Nanus D, Juarez M, Morgan SA, Hassan-Smith Z, Benezech C & Caamano JH et al. 2012 Inflammatory regulation of glucocorticoid metabolism in mesenchymal stromal cells. Arthritis and Rheumatology 64 24042413. (doi:10.1002/art.34414)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Camelliti P, Borg TK & Kohl P 2005 Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research 65 4051. (doi:10.1016/j.cardiores.2004.08.020)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chandrasekar B, Smith JB & Freeman GL 2001 Ischemia-reperfusion of rat myocardium activates nuclear factor-KappaB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation 103 22962302. (doi:10.1161/01.CIR.103.18.2296)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chapman KE, Coutinho A, Gray M, Gilmour JS, Savill JS & Seckl JR 2006 Local amplification of glucocorticoids by 11beta-hydroxysteroid dehydrogenase type 1 and its role in the inflammatory response. Annals of the New York Academy of Sciences 1088 265273. (doi:10.1196/annals.1366.030)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chapman K, Holmes M & Seckl J 2013a 11beta-Hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiological Reviews 93 11391206. (doi:10.1152/physrev.00020.2012)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chapman KE, Coutinho AE, Zhang Z, Kipari T, Savill JS & Seckl JR 2013b Changing glucocorticoid action: 11beta-hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation. Journal of Steroid Biochemistry and Molecular Biology 137 8292. (doi:10.1016/j.jsbmb.2013.02.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen F, Wu W, Millman A, Craft JF, Chen E, Patel N, Boucher JL, Urban JF Jr, Kim CC & Gause WC 2014 Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nature Immunology 15 938946. (doi:10.1038/ni.2984)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Christy C, Hadoke PW, Paterson JM, Mullins JJ, Seckl JR & Walker BR 2003 11beta-Hydroxysteroid dehydrogenase type 2 in mouse aorta: localization and influence on response to glucocorticoids. Hypertension 42 580587. (doi:10.1161/01.HYP.0000088855.06598.5B)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coutinho AE, Gray M, Brownstein DG, Salter DM, Sawatzky DA, Clay S, Gilmour JS, Seckl JR, Savill JS & Chapman KE 2012 11beta-Hydroxysteroid dehydrogenase type 1, but not type 2, deficiency worsens acute inflammation and experimental arthritis in mice. Endocrinology 153 234240. (doi:10.1210/en.2011-1398)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coutinho AE, Brown JK, Yang F, Brownstein DG, Gray M, Seckl JR, Savill JS & Chapman KE 2013 Mast cells express 11beta-hydroxysteroid dehydrogenase type 1: a role in restraining mast cell degranulation. PLoS ONE 8 e54640. (doi:10.1371/journal.pone.0054640)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coutinho A, Kipari T, Zhang Z, Esteves CL, Lucas CD, Gilmour JS, Webster SP, Walker BR, Hughes J & Savill JS et al. 2016 11β-Hydroxysteroid dehydrogenase type 1 is expressed in neutrophils and restrains an inflammatory response in male mice. Endocrinology 157 29282936. (doi:10.1210/en.2016-1118)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Sousa Peixoto RA, Turban S, Battle JH, Chapman KE, Seckl JR & Morton NM 2008 Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo. Endocrinology 149 18611868. (doi:10.1210/en.2007-1028)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dover AR, Hadoke PW, Macdonald LJ, Miller E, Newby DE & Walker BR 2007 Intravascular glucocorticoid metabolism during inflammation and injury in mice. Endocrinology 148 166172. (doi:10.1210/en.2006-0996)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Duan J, Gherghe C, Liu D, Hamlett E, Srikantha L, Rodgers L, Regan JN, Rojas M, Willis M & Leask A et al. 2012 Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO Journal 31 429442. (doi:10.1038/emboj.2011.418)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eash KJ, Greenbaum AM, Gopalan PK & Link DC 2010 CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. Journal of Clinical Investigation 120 24232431. (doi:10.1172/JCI41649)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Epelman S & Mann DL 2012 Communication in the heart: the role of the innate immune system in coordinating cellular responses to ischemic injury. Journal of Cardiovascular Translational Research 5 827836. (doi:10.1007/s12265-012-9410-7)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frangogiannis NG 2012 Regulation of the inflammatory response in cardiac repair. Circulation Research 110 159173. (doi:10.1161/CIRCRESAHA.111.243162)

  • Furtado MB, Costa MW, Pranoto EA, Salimova E, Pinto AR, Lam NT, Park A, Snider P, Chandran A & Harvey RP et al. 2014 Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circulation Research 114 14221434. (doi:10.1161/CIRCRESAHA.114.302530)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilmour JS, Coutinho AE, Cailhier JF, Man TY, Clay M, Thomas G, Harris HJ, Mullins JJ, Seckl JR & Savill JS et al. 2006 Local amplification of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes. Journal of Immunology 176 76057611. (doi:10.4049/jimmunol.176.12.7605)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gray GA, White CI, Castellan RF, McSweeney SJ & Chapman KE 2017 Getting to the heart of intracellular glucocorticoid regeneration: 11beta-HSD1 in the myocardium. Journal of Molecular Endocrinology 58 R1R13. (doi:10.1530/JME-16-0128)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hagood JS, Prabhakaran P, Kumbla P, Salazar L, MacEwen MW, Barker TH, Ortiz LA, Schoeb T, Siegal GP & Alexander CB et al. 2005 Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. American Journal of Pathology 167 365379. (doi:10.1016/S0002-9440(10)62982-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hardy RS, Filer A, Cooper MS, Parsonage G, Raza K, Hardie DL, Rabbitt EH, Stewart PM, Buckley CD & Hewison M 2006 Differential expression, function and response to inflammatory stimuli of 11beta-hydroxysteroid dehydrogenase type 1 in human fibroblasts: a mechanism for tissue-specific regulation of inflammation. Arthritis Research and Therapy 8 R108. (doi:10.1186/ar1993)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hardy R, Rabbitt EH, Filer A, Emery P, Hewison M, Stewart PM, Gittoes NJ, Buckley CD, Raza K & Cooper MS 2008 Local and systemic glucocorticoid metabolism in inflammatory arthritis. Annals of the Rheumatic Diseases 67 12041210. (doi:10.1136/ard.2008.090662)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hatakeyama H, Inaba S & Miyamori I 2001 11beta-hydroxysteroid dehydrogenase activity in human aortic smooth muscle cells. Hypertension Research 24 3337. (doi:10.1291/hypres.24.33)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Horckmans M, Ring L, Duchene J, Santovito D, Schloss MJ, Drechsler M, Weber C, Soehnlein O & Steffens S 2017 Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. European Heart Journal 38 187197. (doi:10.1093/eurheartj/ehw002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jordan JE, Zhao ZQ & Vinten-Johansen J 1999 The role of neutrophils in myocardial ischemia-reperfusion injury. Cardiovascular Research 43 860878. (doi:10.1016/S0008-6363(99)00187-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kardon T, Senesi S, Marcolongo P, Legeza B, Banhegyi G, Mandl J, Fulceri R & Benedetti A 2008 Maintenance of luminal NADPH in the endoplasmic reticulum promotes the survival of human neutrophil granulocytes. FEBS Letters 582 18091815. (doi:10.1016/j.febslet.2008.04.045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, Bolomini-Vittori M, Korf-Klingebiel M, Napp LC & Hansen B et al. 2011 GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nature Medicine 17 581588. (doi:10.1038/nm.2354)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kipari T, Hadoke PW, Iqbal J, Man TY, Miller E, Coutinho AE, Zhang Z, Sullivan KM, Mitic T & Livingstone DE et al. 2013 11beta-Hydroxysteroid dehydrogenase type 1 deficiency in bone marrow-derived cells reduces atherosclerosis. FASEB Journal 27 15191531. (doi:10.1096/fj.12-219105)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kobayashi Y 2008 The role of chemokines in neutrophil biology. Frontiers in Bioscience 13 24002407. (doi:10.2741/2853)

  • Kotelevtsev Y, Holmes MC, Burchell A, Houston PM, Schmoll D, Jamieson P, Best R, Brown R, Edwards CR & Seckl JR et al. 1997 11beta-Hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. PNAS 94 1492414929. (doi:10.1073/pnas.94.26.14924)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lugrin J, Parapanov R, Rosenblatt-Velin N, Rignault-Clerc S, Feihl F, Waeber B, Muller O, Vergely C, Zeller M & Tardivel A et al. 2015 Cutting edge: IL-1alpha is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction. Journal of Immunology 194 499503. (doi:10.4049/jimmunol.1401948)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ma Y, Yabluchanskiy A & Lindsey ML 2013 Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis and Tissue Repair 6 11. (doi:10.1186/1755-1536-6-11)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mazancova K, Kopecky M, Miksik I & Pacha J 2005 11beta-Hydroxysteroid dehydrogenase in the heart of normotensive and hypertensive rats. Journal of Steroid Biochemistry and Molecular Biology 94 273277. (doi:10.1016/j.jsbmb.2005.02.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McSweeney SJ, Hadoke PW, Kozak AM, Small GR, Khaled H, Walker BR & Gray GA 2010 Improved heart function follows enhanced inflammatory cell recruitment and angiogenesis in 11betaHSD1-deficient mice post-MI. Cardiovascular Research 88 159167. (doi:10.1093/cvr/cvq149)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Montecucco F, Bauer I, Braunersreuther V, Bruzzone S, Akhmedov A, Luscher TF, Speer T, Poggi A, Mannino E & Pelli G et al. 2013 Inhibition of nicotinamide phosphoribosyltransferase reduces neutrophil-mediated injury in myocardial infarction. Antioxidants and Redox Signaling 18 630641. (doi:10.1089/ars.2011.4487)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morrison J, Reduto L, Pizzarello R, Geller K, Maley T & Gulotta S 1976 Modification of myocardial injury in man by corticosteroid administration. Circulation 53 I200I204.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Munir H, Luu NT, Clarke LS, Nash GB & McGettrick HM 2016 Comparative ability of mesenchymal stromal cells from different tissues to limit neutrophil recruitment to inflamed endothelium. PLoS ONE 11 e0155161. (doi:10.1371/journal.pone.0155161)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagase H, Miyamasu M, Yamaguchi M, Kawasaki H, Ohta K, Yamamoto K, Morita Y & Hirai K 2000 Glucocorticoids preferentially upregulate functional CXCR4 expression in eosinophils. Journal of Allergy and Clinical Immunology 106 11321139. (doi:10.1067/mai.2000.110923)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nakano A, Harada T, Morikawa S & Kato Y 1990 Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines. Acta Pathologica Japonica 40 107115. (doi:10.1111/j.1440-1827.1990.tb01549.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nanus DE, Filer AD, Yeo L, Scheel-Toellner D, Hardy R, Lavery GG, Stewart PM, Buckley CD, Tomlinson JW & Cooper MS et al. 2015 Differential glucocorticoid metabolism in patients with persistent versus resolving inflammatory arthritis. Arthritis Research and Therapy 17 121. (doi:10.1186/s13075-015-0633-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Newman PJ 1997 The biology of PECAM-1. Journal of Clinical Investigation 100 S25S29. (doi:10.1172/JCI119517)

  • Shinde AV & Frangogiannis NG 2014 Fibroblasts in myocardial infarction: a role in inflammation and repair. Journal of Molecular and Cellular Cardiology 70 7482. (doi:10.1016/j.yjmcc.2013.11.015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Silzle T, Randolph GJ, Kreutz M & Kunz-Schughart LA 2004 The fibroblast: sentinel cell and local immune modulator in tumor tissue. International Journal of Cancer 108 173180. (doi:10.1002/ijc.11542)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith JB & Herschman HR 1996 The glucocorticoid attenuated response genes GARG-16, GARG-39, and GARG-49/IRG2 encode inducible proteins containing multiple tetratricopeptide repeat domains. Archives of Biochemistry and Biophysics 330 290300. (doi:10.1006/abbi.1996.0256)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith RS, Smith TJ, Blieden TM & Phipps RP 1997 Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. American Journal of Pathology 151 317322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun K & Myatt L 2003 Enhancement of glucocorticoid-induced 11beta-hydroxysteroid dehydrogenase type 1 expression by proinflammatory cytokines in cultured human amnion fibroblasts. Endocrinology 144 55685577. (doi:10.1210/en.2003-0780)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tomlinson JW, Moore J, Cooper MS, Bujalska I, Shahmanesh M, Burt C, Strain A, Hewison M & Stewart PM 2001 Regulation of expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology 142 19821989. (doi:10.1210/en.142.5.1982)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner NA 2014 Effects of interleukin-1 on cardiac fibroblast function: relevance to post-myocardial infarction remodelling. Vascular Pharmacology 60 17. (doi:10.1016/j.vph.2013.06.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner NA, Porter KE, Smith WH, White HL, Ball SG & Balmforth AJ 2003 Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. Cardiovascular Research 57 784792. (doi:10.1016/S0008-6363(02)00729-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner NA, Mughal RS, Warburton P, O’Regan DJ, Ball SG & Porter KE 2007 Mechanism of TNFalpha-induced IL-1alpha, IL-1beta and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovascular Research 76 8190. (doi:10.1016/j.cardiores.2007.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Turner NA, Das A, O’Regan DJ, Ball SG & Porter KE 2011 Human cardiac fibroblasts express ICAM-1, E-selectin and CXC chemokines in response to proinflammatory cytokine stimulation. International Journal of Biochemistry and Cell Biology 43 14501458. (doi:10.1016/j.biocel.2011.06.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uhlenhaut NH, Barish GD, Yu RT, Downes M, Karunasiri M, Liddle C, Schwalie P, Hubner N & Evans RM 2013 Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Molecular Cell 49 158171. (doi:10.1016/j.molcel.2012.10.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang J, Harada A, Matsushita S, Matsumi S, Zhang Y, Shioda T, Nagai Y & Matsushima K 1998 IL-4 and a glucocorticoid up-regulate CXCR4 expression on human CD4+ T lymphocytes and enhance HIV-1 replication. Journal of Leukocyte Biology 64 642649.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • White CI, Jansen MA, McGregor K, Mylonas KJ, Richardson RV, Thomson A, Moran CM, Seckl JR, Walker BR & Chapman KE et al. 2016 Cardiomyocyte and vascular smooth muscle-independent 11beta-hydroxysteroid dehydrogenase 1 amplifies infarct expansion, hypertrophy, and the development of heart failure after myocardial infarction in male mice. Endocrinology 157 346357. (doi:10.1210/en.2015-1630)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Willis RA, Nussler AK, Fries KM, Geller DA & Phipps RP 1994 Induction of nitric oxide synthase in subsets of murine pulmonary fibroblasts: effect on fibroblast interleukin-6 production. Clinical Immunology and Immunopathology 71 231239. (doi:10.1006/clin.1994.1077)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, Yamamoto T, Takeshima A, Shinmura K & Shen W et al. 2013 Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. Journal of Molecular and Cellular Cardiology 62 2435. (doi:10.1016/j.yjmcc.2013.04.023)

    • PubMed
    • Search Google Scholar
    • Export Citation

Supplementary Materials

 

  • Collapse
  • Expand
  • Increased neutrophil mobilization and recruitment to the heart in Hsd11b1/ mice post MI. (A) Representative images of Gr-1 IHC of day 2 infarcted hearts from both WT (left) and Hsd11b1/ mice (right). (B) Analysis of the % Gr-1+ immunostaining in infarct and border regions of heart sections from Hsd11b1/ vs WT animals (n = 7/5). (C) Neutrophil numbers in the blood of WT vs Hsd11b1/ mice measured by flow cytometry at 1 day post MI (n = 4/3). (D) Plasma corticosteroid levels were raised post MI and did not differ between WT and Hsd11b1/ mice (n = 7/6; dashed line represents level for naïve C57BL/6 mice, approx. 50–100 ng/mL). *P < 0.05.

  • Absence of gene expression in host cells in bone marrow chimera causes increased neutrophil mobilization but targeted deletion of Hsd11b1/ in smooth muscle cells and cardiomyocytes does not affect neutrophil mobilization or recruitment post MI. Flow cytometric analysis confirms appropriate presence or absence of 11β-HSD1 in the neutrophils of chimeric mice (A). Blood neutrophil numbers were measured in chimeric mice (B; n = 7/6/6, P < 0.05). (C) Neutrophils present in the heart 2 days post MI in control (Hsd11b1CVCre−) vs experimental animals (Hsd11b1CVCre+). (D) Analysis of blood neutrophil numbers in control (Hsd11b1CVCre−) vs experimental animals (Hsd11b1CVCre+) at 1 day post MI. n = 4/4.

  • Inflammatory cytokines and chemokines involved in neutrophil recruitment increase in the heart post MI. qPCR was carried out on infarct and border cardiac tissue from WT or Hsd11b1/ mice 24 h post MI and compared to naïve WT ventricular tissue. (A) Cxcl1, NLRP2, Ccl3 and the adhesion molecule, L-selectin, increased in infarcted tissue compared to naïve myocardium but did not differ between WT and Hsd11b1/ infarcts. (B) Expression of the neutrophil inhibitory peptide Gdf-15 was not modified in hearts from Hsd11b1/ mice. (C) Cxcl2, Cxcl5, Il1b and Il6 were all expressed to a greater extent in Hsd11b1/ than in WT infarct tissue. (C) *P < 0.05, **P < 0.01, ***P < 0.005. In representative experiments shown, n = 4/3, norm., normalized to GAPDH.

  • Cardiac fibroblasts express Cxcl2 and Cxcl5 post MI, which increase in the absence of intracellular glucocorticoid regeneration. qPCR analysis of Cxcl2 (A) and Cxcl5 (B), IL1b (C) and IL-6 (D) performed on RNA isolated from the cellular fractions 1–3 (Supplementary methods) in WT vs Hsd11b1/ mice. *P < 0.05, **P < 0.01, n = 5–6 per group.

  • Cultured cardiac fibroblast expression of Hsd11b1, Cxcl2, Cxcl5 and Il-6 in the presence or absence of IL-1α ± Cort or DHC. (A) qPCR analysis of Cxcl2 and Cxcl5 in cardiac fibroblasts cultured in the presence or absence of IL-1α for 24 h. (B) qPCR carried out on cardiac fibroblasts in the presence or absence of IL-1α ± corticosterone (Cort) or 11-DHC, expressed as fold change over IL-1α treatment alone. Protein production of CXCL2 (C) and CXCL5 (D) in the supernatants as measured by ELISA. (E) The influence of IL-1α ± corticosterone (Cort) or 11-DHC on expression of Il-6 by cultured mouse cardiac fibroblasts. *P < 0.05, **P < 0.01, ***P < 0.005. n = 3–5 per group.

  • Schema for the regulation of neutrophil recruitment to the heart by 11β-HSD1. (A) Chemokines produced by fibroblasts in response to pro-inflammatory cytokines recruit neutrophils to the heart post MI (1). Thy1high and Thy1low cardiac fibroblasts preferentially produce CXCL2 and CXCL5, respectively (2). 11β-HSD1 catalyzes the regeneration of local glucocorticoid, dampening chemokine expression (3). Circulating corticosterone and IL-1α from necrotic cardiomyocytes increase 11β-HSD1 expression (4). (B) In the absence of 11β-HSD1, fibroblasts are driven to produce excess CXCL2 and CXCL5 (5), unleashed due to the lack of dampening local glucocorticoid (6), driving increased neutrophil recruitment to the infarcted heart (7).