microRNA-375 regulates glucose metabolism-related signaling for insulin secretion

in Journal of Endocrinology

Correspondence should be addressed to E Van Obberghen: emmanuel.van-obberghen@unice.fr
Restricted access

Enhanced beta cell glycolytic and oxidative metabolism are necessary for glucose-induced insulin secretion. While several microRNAs modulate beta cell homeostasis, miR-375 stands out as it is highly expressed in beta cells where it regulates beta cell function, proliferation and differentiation. As glucose metabolism is central in all aspects of beta cell functioning, we investigated the role of miR-375 in this process using human and rat islets; the latter being an appropriate model for in-depth investigation. We used forced expression and repression of mR-375 in rat and human primary islet cells followed by analysis of insulin secretion and metabolism. Additionally, miR-375 expression and glucose-induced insulin secretion were compared in islets from rats at different developmental ages. We found that overexpressing of miR-375 in rat and human islet cells blunted insulin secretion in response to glucose but not to α-ketoisocaproate or KCl. Further, miR-375 reduced O2 consumption related to glycolysis and pyruvate metabolism, but not in response to α-ketoisocaproate. Concomitantly, lactate production was augmented suggesting that glucose-derived pyruvate is shifted away from mitochondria. Forced miR-375 expression in rat or human islets increased mRNA levels of pyruvate dehydrogenase kinase-4, but decreased those of pyruvate carboxylase and malate dehydrogenase1. Finally, reduced miR-375 expression was associated with maturation of fetal rat beta cells and acquisition of glucose-induced insulin secretion function. Altogether our findings identify miR-375 as an efficacious regulator of beta cell glucose metabolism and of insulin secretion, and could be determinant to functional beta cell developmental maturation.

 

      Society for Endocrinology

All Time Past Year Past 30 Days
Abstract Views 432 432 314
Full Text Views 77 77 51
PDF Downloads 41 41 31
  • AinscowEKZhaoCRutterGA 2000 Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. Diabetes 1149–1155. (https://doi.org/10.2337/diabetes.49.7.1149)

    • Search Google Scholar
    • Export Citation
  • Avnit-SagiTKantorovichLKredo-RussoSHornsteinEWalkerMD 2009 The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS ONE e5033. (https://doi.org/10.1371/journal.pone.0005033)

    • Search Google Scholar
    • Export Citation
  • BlissCRSharpGW 1992 Glucose-induced insulin release in islets of young rats: time-dependent potentiation and effects of 2-bromostearate. American Journal of Physiology E890–E896. (https://doi.org/10.1152/ajpendo.1992.263.5.E890)

    • Search Google Scholar
    • Export Citation
  • BloomstonMFrankelWLPetroccaFVoliniaSAlderHHaganJPLiuCGBhattDTaccioliCCroceCM 2007 MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 1901–1908. (https://doi.org/10.1001/jama.297.17.1901)

    • Search Google Scholar
    • Export Citation
  • BreretonMFRohmMAshcroftFM 2016 beta-Cell dysfunction in diabetes: a crisis of identity? Diabetes, Obesity and Metabolism (Supplement 1) 102–109. (https://doi.org/10.1111/dom.12732)

    • Search Google Scholar
    • Export Citation
  • CintiFBouchiRKim-MullerJYOhmuraYSandovalPRMasiniMMarselliLSuleimanMRatnerLEMarchettiP, et al. 2016 Evidence of beta-cell dedifferentiation in human type 2 diabetes. Journal of Clinical Endocrinology and Metabolism 1044–1054. (https://doi.org/10.1210/jc.2015-2860)

    • Search Google Scholar
    • Export Citation
  • Delghingaro-AugustoVNolanCJGuptaDJettonTLLatourMGPeshavariaMMadirajuSRJolyEPeyotMLPrentkiM, et al. 2009 Islet beta cell failure in the 60% pancreatectomised obese hyperlipidaemic Zucker fatty rat: severe dysfunction with altered glycerolipid metabolism without steatosis or a falling beta cell mass. Diabetologia 1122–1132. (https://doi.org/10.1007/s00125-009-1317-8)

    • Search Google Scholar
    • Export Citation
  • DumortierOTheysNAhnMTRemacleCReusensB 2011 Impairment of rat fetal beta-cell development by maternal exposure to dexamethasone during different time-windows. PLoS ONE e25576. (https://doi.org/10.1371/journal.pone.0025576)

    • Search Google Scholar
    • Export Citation
  • DumortierOHinaultCVan ObberghenE 2013 MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metabolism 312–324. (https://doi.org/10.1016/j.cmet.2013.06.004)

    • Search Google Scholar
    • Export Citation
  • DumortierOHinaultCGautierNPatourauxSCasamentoVVan ObberghenE 2014 Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375. Diabetes 3416–3427. (https://doi.org/10.2337/db13-1431)

    • Search Google Scholar
    • Export Citation
  • DumortierOFabrisGVan ObberghenE 2016 Shaping and preserving beta-cell identity with microRNAs. Diabetes, Obesity and Metabolism (Supplement 1) 51–57. (https://doi.org/10.1111/dom.12722)

    • Search Google Scholar
    • Export Citation
  • El OuaamariABaroukhNMartensGALebrunPPipeleersDVan ObberghenE 2008 miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 2708–2717. (https://doi.org/10.2337/db07-1614)

    • Search Google Scholar
    • Export Citation
  • EsguerraJLBolmesonCCilioCMEliassonL 2011 Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS ONE e18613. (https://doi.org/10.1371/journal.pone.0018613)

    • Search Google Scholar
    • Export Citation
  • FreinkelNLewisNJJohnsonRSwenneIBoneAHellerstromC 1984 Differential effects of age versus glycemic stimulation on the maturation of insulin stimulus-secretion coupling during culture of fetal rat islets. Diabetes 1028–1038. (https://doi.org/10.2337/diab.33.11.1028)

    • Search Google Scholar
    • Export Citation
  • GuayCRegazziR 2015 MicroRNAs and the functional beta cell mass: for better or worse. Diabetes and Metabolism 369–377. (https://doi.org/10.1016/j.diabet.2015.03.006)

    • Search Google Scholar
    • Export Citation
  • HeYDingYLiangBLinJKimTKYuHHangHWangK 2017 A systematic study of dysregulated microRNA in type 2 diabetes mellitus. International Journal of Molecular Sciences . (https://doi.org/10.3390/ijms18030456)

    • Search Google Scholar
    • Export Citation
  • HellerströmCSwenneI 1991 Functional maturation and proliferation of fetal pancreatic beta-cells. Diabetes (Supplement 2) 89–93. (https://doi.org/10.2337/diab.40.2.s89)

    • Search Google Scholar
    • Export Citation
  • JacovettiCMatkovichSJRodriguez-TrejoAGuayCRegazziR 2015 Postnatal beta-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning. Nature Communications 8084. (https://doi.org/10.1038/ncomms9084)

    • Search Google Scholar
    • Export Citation
  • JafarianATaghikaniMAbrounSAllahverdiALameiMLakpourNSoleimaniM 2015 The generation of insulin producing cells from human mesenchymal stem cells by MiR-375 and anti-MiR-9. PLoS ONE e0128650. (https://doi.org/10.1371/journal.pone.0128650)

    • Search Google Scholar
    • Export Citation
  • JefferyNHarriesLW 2016 beta-Cell differentiation status in type 2 diabetes. Diabetes, Obesity and Metabolism 1167–1175. (https://doi.org/10.1111/dom.12778)

    • Search Google Scholar
    • Export Citation
  • JermendyAToschiEAyeTKohAAguayo-MazzucatoCSharmaAWeirGCSgroiDBonner-WeirS 2011 Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells. Diabetologia 594–604. (https://doi.org/10.1007/s00125-010-2036-x)

    • Search Google Scholar
    • Export Citation
  • JoglekarMVJoglekarVMHardikarAA 2009 Expression of islet-specific microRNAs during human pancreatic development. Gene Expression Patterns 109–113. (https://doi.org/10.1016/j.gep.2008.10.001)

    • Search Google Scholar
    • Export Citation
  • KloostermanWPLagendijkAKKettingRFMoultonJDPlasterkRH 2007 Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biology e203. (https://doi.org/10.1371/journal.pbio.0050203)

    • Search Google Scholar
    • Export Citation
  • LaPierreMPStoffelM 2017 MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Molecular Metabolism 1010–1023. (https://doi.org/10.1016/j.molmet.2017.06.020)

    • Search Google Scholar
    • Export Citation
  • LatreilleMHerrmannsKRenwickNTuschlTMaleckiMTMcCarthyMIOwenKRRulickeTStoffelM 2015 miR-375 gene dosage in pancreatic beta-cells: implications for regulation of beta-cell mass and biomarker development. Journal of Molecular Medicine 1159–1169. (https://doi.org/10.1007/s00109-015-1296-9)

    • Search Google Scholar
    • Export Citation
  • Martinez-SanchezARutterGALatreilleM 2016 MiRNAs in beta-cell development, identity, and disease. Frontiers in Genetics 226. (https://doi.org/10.3389/fgene.2016.00226)

    • Search Google Scholar
    • Export Citation
  • NathanGKredo-RussoSGeigerTLenzAKaspiHHornsteinEEfratS 2015 MiR-375 promotes redifferentiation of adult human beta cells expanded in vitro. PLoS ONE e0122108. (https://doi.org/10.1371/journal.pone.0122108)

    • Search Google Scholar
    • Export Citation
  • OforiJKSalunkheVABaggeAVishnuNNagaoMMulderHWollheimCBEliassonLEsguerraJL 2017 Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Scientific Reports 44986. (https://doi.org/10.1038/srep44986)

    • Search Google Scholar
    • Export Citation
  • ParnaudGHammarERibauxPDonathMYBerneyTHalbanPA 2009 Signaling pathways implicated in the stimulation of beta-cell proliferation by extracellular matrix. Molecular Endocrinology 1264–1271. (https://doi.org/10.1210/me.2009-0008)

    • Search Google Scholar
    • Export Citation
  • PoyMNEliassonLKrutzfeldtJKuwajimaSMaXMacdonaldPEPfefferSTuschlTRajewskyNRorsmanP, et al. 2004 A pancreatic islet-specific microRNA regulates insulin secretion. Nature 226–230. (https://doi.org/10.1038/nature03076)

    • Search Google Scholar
    • Export Citation
  • PoyMNHausserJTrajkovskiMBraunMCollinsSRorsmanPZavolanMStoffelM 2009 miR-375 maintains normal pancreatic alpha- and beta-cell mass. PNAS 5813–5818. (https://doi.org/10.1073/pnas.0810550106)

    • Search Google Scholar
    • Export Citation
  • PrentkiMMatschinskyFMMadirajuSR 2013 Metabolic signaling in fuel-induced insulin secretion. Cell Metabolism 162–185. (https://doi.org/10.1016/j.cmet.2013.05.018)

    • Search Google Scholar
    • Export Citation
  • PullenTJRutterGA 2013 When less is more: the forbidden fruits of gene repression in the adult beta-cell. Diabetes, Obesity and Metabolism 503–512. (https://doi.org/10.1111/dom.12029)

    • Search Google Scholar
    • Export Citation
  • PullenTJSylowLSunGHalestrapAPRichterEARutterGA 2012 Overexpression of monocarboxylate transporter-1 (SLC16A1) in mouse pancreatic beta-cells leads to relative hyperinsulinism during exercise. Diabetes 1719–1725. (https://doi.org/10.2337/db11-1531)

    • Search Google Scholar
    • Export Citation
  • QuintensRHendrickxNLemaireKSchuitF 2008 Why expression of some genes is disallowed in beta-cells. Biochemical Society Transactions 300–305. (https://doi.org/10.1042/BST0360300)

    • Search Google Scholar
    • Export Citation
  • SalunkheVAEsguerraJLOforiJKMolletIGBraunMStoffelMWendtAEliassonL 2015 Modulation of microRNA-375 expression alters voltage-gated Na(+) channel properties and exocytosis in insulin-secreting cells. Acta Physiologica 882–892. (https://doi.org/10.1111/apha.12460)

    • Search Google Scholar
    • Export Citation
  • SchuitFDe VosAFarfariSMoensKPipeleersDBrunTPrentkiM 1997 Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. Journal of Biological Chemistry 18572–18579. (https://doi.org/10.1074/jbc.272.30.18572)

    • Search Google Scholar
    • Export Citation
  • SeyhanAANunez LopezYOXieHYiFMathewsCPasaricaMPratleyRE 2016 Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Scientific Reports 31479. (https://doi.org/10.1038/srep31479)

    • Search Google Scholar
    • Export Citation
  • ShaerAAzarpiraNKarimiMH 2014a Differentiation of human induced pluripotent stem cells into insulin-like cell clusters with miR-186 and miR-375 by using chemical transfection. Applied Biochemistry and Biotechnology 242–258. (https://doi.org/10.1007/s12010-014-1045-5)

    • Search Google Scholar
    • Export Citation
  • ShaerAAzarpiraNVahdatiAKarimiMHShariatiM 2014b miR-375 induces human decidua basalis-derived stromal cells to become insulin-producing cells. Cellular and Molecular Biology Letters 483–499. (https://doi.org/10.2478/s11658-014-0207-3)

    • Search Google Scholar
    • Export Citation
  • SjoholmASandbergEOstensonCGEfendicS 2000a Peptidergic regulation of maturation of the stimulus-secretion coupling in fetal islet beta cells. Pancreas 282–289. (https://doi.org/10.1097/00006676-200004000-00010)

    • Search Google Scholar
    • Export Citation
  • SjoholmASandbergEOstensonCGEfendicS 2000b Regulation of in vitro maturation of stimulus-secretion coupling in fetal rat islet beta-cells. Endocrine 273–278. (https://doi.org/10.1385/ENDO:12:3:273)

    • Search Google Scholar
    • Export Citation
  • Stolovich-RainMEnkJVikesaJNielsenFCSaadaAGlaserBDorY 2015 Weaning triggers a maturation step of pancreatic beta cells. Developmental Cell 535–545. (https://doi.org/10.1016/j.devcel.2015.01.002)

    • Search Google Scholar
    • Export Citation
  • TalchaiCXuanSLinHVSusselLAcciliD 2012 Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 1223–1234. (https://doi.org/10.1016/j.cell.2012.07.029)

    • Search Google Scholar
    • Export Citation
  • TattikotaSGRathjenTMcAnultySJWesselsHHAkermanIvan de BuntMHausserJEsguerraJLMusahlAPandeyAK, et al. 2014 Argonaute2 mediates compensatory expansion of the pancreatic beta cell. Cell Metabolism 122–134. (https://doi.org/10.1016/j.cmet.2013.11.015)

    • Search Google Scholar
    • Export Citation
  • TheysNAhnMTBouckenoogheTReusensBRemacleC 2011 Maternal malnutrition programs pancreatic islet mitochondrial dysfunction in the adult offspring. Journal of Nutritional Biochemistry 985–994. (https://doi.org/10.1016/j.jnutbio.2010.08.015)

    • Search Google Scholar
    • Export Citation
  • WeirGCLaybuttDRKanetoHBonner-WeirSSharmaA 2001 beta-Cell adaptation and decompensation during the progression of diabetes. Diabetes (Supplement 1) S154–S159. (https://doi.org/10.2337/diabetes.50.2007.s154)

    • Search Google Scholar
    • Export Citation
  • ZhaoHGuanJLeeHMSuiYHeLSiuJJTsePPTongPCLaiFMChanJC 2010 Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas 843–846. (https://doi.org/10.1097/MPA.0b013e3181d12613)

    • Search Google Scholar
    • Export Citation