Sexually dimorphic gene expression and neurite sensitivity to estradiol in fetal arcuate Kiss1 cells

in Journal of Endocrinology

Correspondence should be addressed to I Franceschini: isabelle.franceschini-laurent@inra.fr
Restricted access

Kiss1 neurons of the arcuate (ARC) nucleus form an interconnected network of cells that communicate via neurokinin B (encoded by Tac2) and its receptor (encoded by Tacr3) and play key roles in the control of the reproductive axis through sex hormone-regulated synthesis and release of kisspeptin peptides (Kp, encoded by Kiss1). The aim of this study was to determine whether the Kiss1 cell population of the ARC already displays sexually dimorphic features at embryonic age E16.5 in mice. At this time of development, Kiss1-GFP- and Kp-immunoreactive cell bodies were restricted to the ARC and not found in the pre-optic area (POA). The Kiss1-GFP cell population was identical in size between sexes but had significantly lower Kiss1, Tac2, and Tacr3 mRNA levels and lower Kp-ir fiber density in the POA in male compared to female fetuses. Receptors for androgen (Ar) and estrogen (Esr1, Esr2, Gpr30) and the Cyp19a1 gene (encoding the estradiol-producing enzyme aromatase) transcripts were also detected in fetal ARC Kiss1-GFP cells with significant sex differences for Ar (higher in males) and Esr1 (higher in females). Functional studies on primary cultures of sorted fetal Kiss1-GFP cells revealed a significant negative effect of estradiol treatment on neurite outgrowth on the fourth day of culture in the female group specifically. We conclude that the ARC Kiss1 cell population is already sexually differentiated at E16.5 and that its morphogenetic development may be particularly vulnerable to estradiol exposure at this early developmental time.

 

      Society for Endocrinology

All Time Past Year Past 30 Days
Abstract Views 71 71 71
Full Text Views 4 4 4
PDF Downloads 3 3 3
  • AdachiSYamadaSTakatsuYMatsuiHKinoshitaMTakaseKSugiuraHOhtakiTMatsumotoHUenoyamaY, 2007 Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. Journal of Reproduction and Development 367–378. (https://doi.org/10.1262/jrd.18146)

    • Search Google Scholar
    • Export Citation
  • AltmanJBayerSA 1978 Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. Journal of Comparative Neurology 973–993. (https://doi.org/10.1002/cne.901820512)

    • Search Google Scholar
    • Export Citation
  • BealeKEKinsey-JonesJSGardinerJVHarrisonEKThompsonELHuMHSleethMLSamAHGreenwoodHCMcGaviganAK, 2014 The physiological role of arcuate kisspeptin neurons in the control of reproductive function in female rats. Endocrinology 1091–1098. (https://doi.org/10.1210/en.2013-1544)

    • Search Google Scholar
    • Export Citation
  • BouretSGDraperSJSimerlyRB 2004 Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. Journal of Neuroscience 2797–2805. (https://doi.org/10.1523/JNEUROSCI.5369-03.2004)

    • Search Google Scholar
    • Export Citation
  • CambiassoMJCisternasCDRuiz-PalmeroIScerboMJArevaloMAAzcoitiaIGarcia-SeguraLM 2017 Interaction of sex chromosome complement, gonadal hormones and neuronal steroid synthesis on the sexual differentiation of mammalian neurons. Journal of Neurogenetics 300–306. (https://doi.org/10.1080/01677063.2017.1390572)

    • Search Google Scholar
    • Export Citation
  • CiofiPLeroyDTramuG 2006 Sexual dimorphism in the organization of the rat hypothalamic infundibular area. Neuroscience 1731–1745. (https://doi.org/10.1016/j.neuroscience.2006.05.041)

    • Search Google Scholar
    • Export Citation
  • ClarksonJHerbisonAE 2009 Oestrogen, kisspeptin, GPR54 and the pre-ovulatory luteinising hormone surge. Journal of Neuroendocrinology 305–311. (https://doi.org/10.1111/j.1365-2826.2009.01835.x)

    • Search Google Scholar
    • Export Citation
  • ClarksonJBusbyERKirilovMSchutzGSherwoodNMHerbisonAE 2014 Sexual differentiation of the brain requires perinatal kisspeptin-GnRH neuron signaling. Journal of Neuroscience 15297–15305. (https://doi.org/10.1523/JNEUROSCI.3061-14.2014)

    • Search Google Scholar
    • Export Citation
  • d’Anglemont de TassignyXFaggLADixonJPCDayKLeitchHGHendrickAGZahnDFranceschiniICaratyACarltonMBL, 2007 Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. PNAS 10714–10719. (https://doi.org/10.1073/pnas.0704114104)

    • Search Google Scholar
    • Export Citation
  • De CroftSPietRMayerCMaiOBoehmUHerbisonAE 2012 Spontaneous kisspeptin neuron firing in the adult mouse reveals marked sex and brain region differences but no support for a direct role in negative feedback. Endocrinology 5384–5393. (https://doi.org/10.1210/en.2012-1616)

    • Search Google Scholar
    • Export Citation
  • de LacalleS 2006 Estrogen effects on neuronal morphology. Endocrine 185–190. (https://doi.org/10.1385/ENDO:29:2:185)

  • DesroziersEDroguerreMBentsenAHRobertVMikkelsenJDCaratyATilletYDuittozAFranceschiniI 2012 Embryonic development of kisspeptin neurones in rat. Journal of Neuroendocrinology 1284–1295. (https://doi.org/10.1111/j.1365-2826.2012.02333.x)

    • Search Google Scholar
    • Export Citation
  • FranceschiniIYeoSHBeltramoMDesroziersEOkamuraHHerbisonAECaratyA 2013 Immunohistochemical evidence for the presence of various kisspeptin isoforms in the mammalian brain. Journal of Neuroendocrinology 839–851. (https://doi.org/10.1111/jne.12069)

    • Search Google Scholar
    • Export Citation
  • GianettiETussetCNoelSDAuMGDwyerAAHughesVAAbreuAPCarrollJTrarbachESilveiraLFG, 2010 TAC3/TACR3 mutations reveal preferential activation of gonadotropin-releasing hormone release by neurokinin B in neonatal life followed by reversal in adulthood. Journal of Clinical Endocrinology and Metabolism 2857–2867. (https://doi.org/10.1210/jc.2009-2320)

    • Search Google Scholar
    • Export Citation
  • GoldsmithPCSongT 1987 The gonadotropin releasing hormone containing ventral hypothalamic tract in the fetal rhesus monkey (Macaca mulatto). Journal of Comparative Neurology 130–139. (https://doi.org/10.1002/cne.902570110)

    • Search Google Scholar
    • Export Citation
  • GottschMLPopaSMLawhornJKQiuJTonsfeldtKJBoschMAKellyMJRønnekleivOKSanzEMcKnightGS, 2011 Molecular properties of kiss1 neurons in the arcuate nucleus of the mouse. Endocrinology 4298–4309. (https://doi.org/10.1210/en.2011-1521)

    • Search Google Scholar
    • Export Citation
  • HendersonRGBrownAETobetSA 1999 Sex differences in cell migration in the preoptic area/anterior hypothalamus of mice. Journal of Neurobiology 252–266. (https://doi.org/10.1002/(SICI)1097-4695(19991105)41:2<252::AID-NEU8>3.0.CO;2-W)

    • Search Google Scholar
    • Export Citation
  • HoVYeoSYKunasegaranKDe SilvaDTarulliGAVoorhoevePMPiettersenAM 2013 Expression analysis of rare cellular subsets : direct RT-PCR on limited cell numbers obtained by FACS or soft agar assays. BioTechniques 208–212. (https://doi.org/10.2144/000114019)

    • Search Google Scholar
    • Export Citation
  • HuMHLiXFMcCauslandBLiSYGreshamRKinsey-JonesJSGardinerJVSamAHBloomSRPostonL, 2015 Relative importance of the arcuate and anteroventral periventricular kisspeptin neurons in control of puberty and reproductive function in female rats. Endocrinology 2619–2631. (https://doi.org/10.1210/en.2014-1655)

    • Search Google Scholar
    • Export Citation
  • JacobsDCVeitchREChappellPE 2016 Evaluation of immortalized AVPV- and arcuate-specific neuronal kisspeptin cell lines to elucidate potential mechanisms of estrogen responsiveness and temporal gene expression in females. Endocrinology 3410–3419. (https://doi.org/10.1210/en.2016-1294)

    • Search Google Scholar
    • Export Citation
  • KauffmanASNavarroVMKimJCliftonDKSteinerRA 2009 Sex differences in the regulation of Kiss1/NKB neurons in juvenile mice: implications for the timing of puberty. American Journal of Physiology: Endocrinology and Metabolism E1212–E1221. (https://doi.org/10.1152/ajpendo.00461.2009)

    • Search Google Scholar
    • Export Citation
  • KnollJGClayCMBoumaGJHenionTRSchwartingGAMillarRPTobetSA 2013 Developmental profile and sexually dimorphic expression of kiss1 and kiss1r in the fetal mouse brain. Frontiers in Endocrinology 140. (https://doi.org/10.3389/fendo.2013.00140)

    • Search Google Scholar
    • Export Citation
  • KrajewskiSJBurkeMCAndersonMJMcmullenNTRanceNE 2010 Forebrain projections of arcuate neurokinin B neurons demonstrated by anterograde tract-tracing and monosodium glutamate lesions in the rat. Neuroscience 680–697. (https://doi.org/10.1016/j.neuroscience.2009.12.053)

    • Search Google Scholar
    • Export Citation
  • KumarDFreeseMDrexlerDHermans-BorgmeyerIMarquardtABoehmU 2014 Murine arcuate nucleus kisspeptin neurons communicate with GnRH neurons in utero. Journal of Neuroscience 3756–3766. (https://doi.org/10.1523/JNEUROSCI.5123-13.2014)

    • Search Google Scholar
    • Export Citation
  • KumarDPeriasamyVFreeseMVoigtABoehmU 2015 In utero development of kisspeptin/GnRH neural circuitry in male mice. Endocrinology 3084–3090. (https://doi.org/10.1210/EN.2015-1412)

    • Search Google Scholar
    • Export Citation
  • LehmanMNHilemanSMGoodmanRL 2013 Neuroanatomy of the kisspeptin signaling system in mammals: comparative and developmental aspects. Advances in Experimental Medicine and Biology 27–62. (https://doi.org/10.1007/978-1-4614-6199-9_3)

    • Search Google Scholar
    • Export Citation
  • LiuXHerbisonAE 2016 Kisspeptin regulation of neuronal activity throughout the central nervous system. Endocrinology and Metabolism 193–205. (https://doi.org/10.3803/EnM.2016.31.2.193)

    • Search Google Scholar
    • Export Citation
  • McCarthyMM 2008 Estradiol and the developing brain. Physiological Reviews 91–124. (https://doi.org/10.1152/physrev.00010.2007)

  • Mittelman-SmithMAKrajewski-HallSJMcMullenNTRanceNE 2016 Ablation of KNDy neurons results in hypogonadotropic hypogonadism and amplifies the steroid-induced lh surge in female rats. Endocrinology 2015–2027. (https://doi.org/10.1210/en.2015-1740)

    • Search Google Scholar
    • Export Citation
  • NavarroVMGottschMLChavkinCOkamuraHCliftonDKSteinerRA 2009 Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. Journal of Neuroscience 11859–11866. (https://doi.org/10.1523/JNEUROSCI.1569-09.2009)

    • Search Google Scholar
    • Export Citation
  • NavarroVMGottschMLWuMGarcía-GalianoDHobbsSJBoschMAPinillaLCliftonDKDearthARonnekleivOK, 2011 Regulation of NKB pathways and their roles in the control of Kiss1 neurons in the arcuate nucleus of the male mouse. Endocrinology 4265–4275. (https://doi.org/10.1210/en.2011-1143)

    • Search Google Scholar
    • Export Citation
  • PointisGLatreilleMTCedardL 1980 Gonado-pituitary relationships in the fetal mouse at various times during sexual differentiation. Journal of Endocrinology 483–488. (https://doi.org/10.1677/joe.0.0860483)

    • Search Google Scholar
    • Export Citation
  • PolingMCLuoEYKauffmanAS 2017 Sex differences in steroid receptor coexpression and circadian-timed activation of kisspeptin and RFRP-3 neurons may contribute to the sexually dimorphic basis of the LH surge. Endocrinology 3565–3578. (https://doi.org/10.1210/en.2017-00405)

    • Search Google Scholar
    • Export Citation
  • RebuliMEPatisaulHB 2016 Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. Journal of Steroid Biochemistry and Molecular Biology 148–159. (https://doi.org/10.1016/j.jsbmb.2015.08.021)

    • Search Google Scholar
    • Export Citation
  • SchambraU 2008 Prenatal Mouse Brain Atlas: Color Images and Annotated Diagrams of: Gestational Days 12, 14, 16 and 18 Sagittal, Coronal and Horizontal Section. Berlin, Germany: Springer Sciences and Business Media.

    • Search Google Scholar
    • Export Citation
  • SmithJTCunninghamMJRissmanEFCliftonDKSteinerRA 2005a Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 3686–3692. (https://doi.org/10.1210/en.2005-0488)

    • Search Google Scholar
    • Export Citation
  • SmithJTDunganHMStollEAGottschMLBraunREEackerSMCliftonDKSteinerRA 2005b Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 2976–2984. (https://doi.org/10.1210/en.2005-0323)

    • Search Google Scholar
    • Export Citation
  • TreenAKLuoVChalmersJADalviPSTranDYeWKimGLFriedmanZBelshamDD 2016 Divergent regulation of ER and Kiss genes by 17β-estradiol in hypothalamic ARC versus AVPV models. Molecular Endocrinology 217–233. (https://doi.org/10.1210/me.2015-1189)

    • Search Google Scholar
    • Export Citation
  • WolfeCAVan DorenMWalkerHJSeneyMLMcClellanKMTobetSA 2005 Sex differences in the location of immunochemically defined cell populations in the mouse preoptic area/anterior hypothalamus. Brain Research: Developmental Brain Research 34–41. (https://doi.org/10.1016/j.devbrainres.2005.03.001)

    • Search Google Scholar
    • Export Citation
  • YipSHBoehmUHerbisonAECampbellRE 2015 Conditional viral tract-tracing delineates the projections of the distinct kisspeptin neuron populations to gonadotropin-releasing hormone (GnRH) neurons in the mouse. Endocrinology 2582–2594. (https://doi.org/10.1210/en.2015-1131)

    • Search Google Scholar
    • Export Citation
  • YoungWJChangC 1998 Ontogeny and autoregulation of androgen receptor mRNA expression in the nervous system. Endocrine 79–88. (https://doi.org/10.1385/ENDO:9:1:79)

    • Search Google Scholar
    • Export Citation