Glucocorticoid and mineralocorticoid receptor activation modulates postnatal growth

in Journal of Endocrinology

Correspondence should be addressed to M M Vijayan: matt.vijayan@ucalgary.ca
Restricted access

During early development, stress or exogenous glucocorticoid (GC) administration reduces body mass in vertebrates, and this is associated with the glucocorticoid receptor (GR) activation. Although GCs also activate the mineralocorticoid receptor (MR), the physiological significance of MR activation on early developmental growth is unknown. We tested the hypothesis that activation of both GR and MR are required for postnatal growth suppression by GCs. Differential regulation of GR and MR activation was achieved by using ubiquitous GR- (GRKO) and MR- (MRKO) knockout zebrafish (Danio rerio) in combination with exogenous cortisol treatment. MR activation increased protein deposition in zebrafish larvae and also upregulated lepa and downregulated lepr transcript abundance. Cortisol treatment reduced body mass and protein content in the WT, and this corresponded with the upregulation of muscle proteolytic markers, including murf1 and redd1 by GR activation. The combined activation of MR and GR by cortisol also upregulated the gh and igf1 transcript abundance, and insulin expression compared to the WT. However, cortisol-mediated reduction in body mass and protein content required the activation of both MR and GR, as activation by GR alone (MRKO + cortisol) did not reduce the larval protein content. Collectively, our results indicate that MR activation favors protein deposition and GR activation stimulates proteolysis, while their combined activation is involved in cortisol-mediated growth suppression. Overall, this work provides insight into the physiological significance of MR activation in regulating protein deposition during early development at a systems level.

 

      Society for Endocrinology

All Time Past Year Past 30 Days
Abstract Views 106 106 106
Full Text Views 10 10 10
PDF Downloads 3 3 3
  • AlsopDVijayanMM 2008 Development of the corticosteroid stress axis and receptor expression in zebrafish. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology R711–R719. (https://doi.org/10.1152/ajpregu.00671.2007)

    • Search Google Scholar
    • Export Citation
  • AlsopDVijayanMM 2009 The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. General and Comparative Endocrinology 62–66. (https://doi.org/10.1016/j.ygcen.2008.09.011)

    • Search Google Scholar
    • Export Citation
  • BakerMEFunderJWKattoulaSR 2013 Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors. Journal of Steroid Biochemistry and Molecular Biology 57–70. (https://doi.org/10.1016/j.jsbmb.2013.07.009)

    • Search Google Scholar
    • Export Citation
  • BernierNJ 2006 The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. General and Comparative Endocrinology 45–55. (https://doi.org/10.1016/j.ygcen.2005.11.016)

    • Search Google Scholar
    • Export Citation
  • BrittoFABegueGRossanoBDocquierAVernusBSarCFerryABonnieuAOllendorffVFavierFB 2014 REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy. American Journal of Physiology: Endocrinology and Metabolism E983–E993. (https://doi.org/10.1152/ajpendo.00234.2014)

    • Search Google Scholar
    • Export Citation
  • BrittoFACortadeFBelloumYBlaquièreMGallotYSDocquierAPaganoAFJublancEBendridiNKoechlin-RamonatxoC, 2018 Glucocorticoid-dependent REDD1 expression reduces muscle metabolism to enable adaptation under energetic stress. BMC Biology 65. (https://doi.org/10.1186/s12915-018-0525-4)

    • Search Google Scholar
    • Export Citation
  • ChadwickJAHauckJSLoweJShawJJGuttridgeDCGomez-SanchezCEGomez-SanchezEPRafael-FortneyJA 2015 Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. FASEB Journal 4544–4554. (https://doi.org/10.1096/fj.15-276782)

    • Search Google Scholar
    • Export Citation
  • ChadwickJABhattacharyaSLoweJWeislederNRafael-FortneyJA 2017 Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles. American Journal of Physiology: Cell Physiology C155–C168. (https://doi.org/10.1152/ajpcell.00269.2016)

    • Search Google Scholar
    • Export Citation
  • CharmandariETsigosCChrousosG 2005 Endocrinology of the stress response. Annual Review of Physiology 259–284. (https://doi.org/10.1146/annurev.physiol.67.040403.120816)

    • Search Google Scholar
    • Export Citation
  • CianfaraniSGeremiaCScottCDGermaniD 2002 Growth, IGF system, and cortisol in children with intrauterine growth retardation: is catch-up growth affected by reprogramming of the hypothalamic-pituitary-adrenal axis? Pediatric Research 94–99. (https://doi.org/10.1203/00006450-200201000-00017)

    • Search Google Scholar
    • Export Citation
  • CopelandDLDuffRJLiuQProkopJLondravilleRL 2011 Leptin in teleost fishes: an argument for comparative study. Frontiers in Physiology 26. (https://doi.org/10.3389/fphys.2011.00026)

    • Search Google Scholar
    • Export Citation
  • de KloetERReulJMHM 1987 Feedback action and tonic influence of the corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 83–105. (https://doi.org/10.1016/0306-4530(87)90040-0)

    • Search Google Scholar
    • Export Citation
  • FacchinelloNSkoboTMeneghettiGCollettiEDinarelloATisoNCostaRGioacchiniGCarnevaliOArgentonF, 2017 nr3c1 null mutant zebrafish are viable and reveal DNA-binding-independent activities of the glucocorticoid receptor. Scientific Reports 4371. (https://doi.org/10.1038/s41598-017-04535-6)

    • Search Google Scholar
    • Export Citation
  • FaughtEVijayanMM 2018a The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Scientific Reports 18081. (https://doi.org/10.1038/s41598-018-36681-w)

    • Search Google Scholar
    • Export Citation
  • FaughtEVijayanMM 2018b Maternal stress and fish reproduction: the role of cortisol revisited. Fish and Fisheries 1016–1030. (https://doi.org/10.1111/faf.12309)

    • Search Google Scholar
    • Export Citation
  • FaughtEVijayanMM 2019a Loss of the glucocorticoid receptor in zebrafish improves muscle glucose availability and increases growth. American Journal of Physiology: Endocrinology and Metabolism E1093–E1104. (https://doi.org/10.1152/ajpendo.00045.2019)

    • Search Google Scholar
    • Export Citation
  • FaughtEVijayanMM 2019b Postnatal triglyceride accumulation is regulated by the mineralocorticoid receptor under basal and stress conditions. Journal of Physiology 4927–4941. (https://doi.org/10.1113/JP278088)

    • Search Google Scholar
    • Export Citation
  • FengQZouXLuLLiYLiuYZhouJDuanC 2012 The stress-response gene redd1 regulates dorsoventral patterning by antagonizing Wnt/b-catenin activity in zebrafish. PLoS ONE e52674. (https://doi.org/10.1371/journal.pone.0052674)

    • Search Google Scholar
    • Export Citation
  • GaltNJMichaelJRemilyEARomeroSRBigaPR 2014 The effects of exogenous cortisol on myostatin transcription in rainbow. Comparative Biochemistry and Physiology, Part A 57–63. (https://doi.org/10.1016/j.cbpa.2014.05.015)

    • Search Google Scholar
    • Export Citation
  • GokulakrishnanGEstradaIJSosaHAFiorottoML 2012 In utero glucocorticoid exposure reduces fetal skeletal muscle mass in rats independent of effects on maternal nutrition. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology R1143–R1152. (https://doi.org/10.1152/ajpregu.00466.2011)

    • Search Google Scholar
    • Export Citation
  • GreenwoodPLBellAW 2003 Consequences of intra-uterine growth retardation for postnatal growth, metabolism and pathophysiology. Reproduction 195–206. (https://doi.org/10.1530/biosciprocs.5.015)

    • Search Google Scholar
    • Export Citation
  • JoëlsMde KloetER 2017 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The brain mineralocorticoid receptor: a saga in three episodes. Journal of Endocrinology T49–T66. (https://doi.org/10.1530/JOE-16-0660)

    • Search Google Scholar
    • Export Citation
  • KellyHWSternbergALLescherRFuhlbriggeALWilliamsPZeigerRSRaissyHHVan NattaMLTonasciaJStrunkRC, 2012 Effect of inhaled glucocorticoids in childhood on adult height. New England Journal of Medicine 904–912. (https://doi.org/10.1056/NEJMoa1203229)

    • Search Google Scholar
    • Export Citation
  • KiilerichPTriqueneauxGChristensenNMTrayerVTerrienXLombèsMPrunetP 2015 Interaction between the trout mineralocorticoid and glucocorticoid receptors in vitro. Journal of Molecular Endocrinology 55–68. (https://doi.org/10.1530/JME-15-0002)

    • Search Google Scholar
    • Export Citation
  • KuoTHarrisCAWangJC 2013 Metabolic functions of glucocorticoid receptor in skeletal muscle. Molecular and Cellular Endocrinology 79–88. (https://doi.org/10.1016/j.mce.2013.03.003)

    • Search Google Scholar
    • Export Citation
  • LipinaCHundalHS 2016 Is REDD1 a metabolic éminence grise? Trends in Endocrinology and Metabolism 868–880. (https://doi.org/10.1016/j.tem.2016.08.005)

    • Search Google Scholar
    • Export Citation
  • LiuQChenYCopelandDBallHDuffRJRockichBLondravilleRL 2010 Expression of leptin receptor gene in developing and adult zebrafish. General and Comparative Endocrinology 346–355. (https://doi.org/10.1016/j.ygcen.2009.11.015)

    • Search Google Scholar
    • Export Citation
  • LiuQDalmanMChenYAkhterMBrahmandamSPatelYLoweJThakkarMGregoryAVPhelpsD, 2012 Knockdown of leptin A expression dramatically alters zebrafish development. General and Comparative Endocrinology 562–572. (https://doi.org/10.1016/j.ygcen.2012.07.011)

    • Search Google Scholar
    • Export Citation
  • LöhrHHessSPereiraMMAReinoßPLeiboldSSchenkelCWunderlichCMKloppenburgPBrüningJCHammerschmidtM 2018 Diet-induced growth is regulated via acquired leptin resistance and engages a Pomc-somatostatin-growth hormone circuit. Cell Reports 1728–1741. (https://doi.org/10.1016/j.celrep.2018.04.018)

    • Search Google Scholar
    • Export Citation
  • MadisonBNTavakoliSKramerSBernierNJ 2015 Chronic cortisol and the regulation of food intake and the endocrine growth axis in rainbow trout. Journal of Endocrinology 103–119. (https://doi.org/10.1530/JOE-15-0186)

    • Search Google Scholar
    • Export Citation
  • MarzollaVArmaniAZennaroMCCintiFMammiCFabbriARosanoGMCCaprioM 2012 The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Molecular and Cellular Endocrinology 281–288. (https://doi.org/10.1016/j.mce.2011.09.011)

    • Search Google Scholar
    • Export Citation
  • McCormickSDShrimptonJMCareyJBO’DeaMFSloanKEMoriyamaSBjörnssonBT 1998 Repeated acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor I and cortisol. Aquaculture 221–235. (https://doi.org/10.1016/S0044-8486(98)00351-2)

    • Search Google Scholar
    • Export Citation
  • MichelMPage-McCawPSChenWConeRD 2016 Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. PNAS 3084–3089. (https://doi.org/10.1073/pnas.1513212113)

    • Search Google Scholar
    • Export Citation
  • MifsudKRReulJMHM 2016 Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus. PNAS 11336–11341. (https://doi.org/10.1073/pnas.1605246113)

    • Search Google Scholar
    • Export Citation
  • MifsudKRReulJMHM 2018 Mineralocorticoid and glucocorticoid receptor-mediated control of genomic responses to stress in the brain. Stress 389–402. (https://doi.org/10.1080/10253890.2018.1456526)

    • Search Google Scholar
    • Export Citation
  • MommsenTP 2001 Paradigms of growth in fish. Comparative Biochemistry and Physiology 207–219. (https://doi.org/10.1016/S1096-4959(01)00312-8)

    • Search Google Scholar
    • Export Citation
  • MommsenTPVijayanMMMoonTW 1999 Cortisol in teleosts : dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries 211–268. (https://doi.org/10.1023/A:1008924418720)

    • Search Google Scholar
    • Export Citation
  • NesanDVijayanMM 2016 Maternal cortisol mediates hypothalamus-pituitary-interrenal axis development in zebrafish. Scientific Reports 22582. (https://doi.org/10.1038/srep22582)

    • Search Google Scholar
    • Export Citation
  • NesanDKamkarMBurrowsJScottICMarsdenMVijayanMM 2012 Glucocorticoid receptor signaling is essential for mesoderm formation and muscle development in zebrafish. Endocrinology 1288–1300. (https://doi.org/10.1210/en.2011-1559)

    • Search Google Scholar
    • Export Citation
  • OrtegaVALovejoyDABernierNJ 2013 Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss). Frontiers in Neuroscience 196. (https://doi.org/10.3389/fnins.2013.00196)

    • Search Google Scholar
    • Export Citation
  • PickeringAD 1993 Growth and stress in fish production. Aquaculture 51–63. (https://doi.org/10.1016/0044-8486(93)90024-S)

  • RiversCARogersMFStubbsFEConway-CampbellBLLightmanSLPooleyJR 2019 Glucocorticoid receptor-tethered mineralocorticoid receptors increase glucocorticoid-induced transcriptional responses. Endocrinology 1044–1056. (https://doi.org/10.1210/en.2018-00819)

    • Search Google Scholar
    • Export Citation
  • SadoulBVijayanMM 2016 Stress and growth. In Fish Physiology, pp 167–205. Eds SchreckCB, TortL, FarrellAP & BraunerCJ. Amsterdam, Netherlands: Elsevier Inc. (https://doi.org/10.1016/B978-0-12-802728-8.00005-9)

    • Search Google Scholar
    • Export Citation
  • SartinJLKemppainenRJColemanESSteeleBWilliamsJC 1994 Cortisol inhibition of growth hormone-releasing hormone-stimulated growth hormone release from cultured sheep pituitary cells. Journal of Endocrinology 517–525. (https://doi.org/10.1677/joe.0.1410517)

    • Search Google Scholar
    • Export Citation
  • ShapiroLESamuelsHHYaffeBM 1978 Thyroid and glucocorticoid hormones synergistically control growth hormone mRNA in cultured GH1 cells. PNAS 45–49. (https://doi.org/10.1073/pnas.75.1.45)

    • Search Google Scholar
    • Export Citation
  • ShepherdBSAluruNVijayanMM 2011 Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss). Domestic Animal Endocrinology 129–138. (https://doi.org/10.1016/j.domaniend.2010.09.007)

    • Search Google Scholar
    • Export Citation
  • ShimizuNYoshikawaNItoNMaruyamaTSuzukiYTakedaSINakaeJTagataYNishitaniSTakehanaK, 2011 Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metabolism 170–182. (https://doi.org/10.1016/j.cmet.2011.01.001)

    • Search Google Scholar
    • Export Citation
  • ShimizuHLangenbacherADHuangJWangKOttoGGeislerRWangYChenJN 2017 The calcineurin-FoxO-MuRF1 signaling pathway regulates myofibril integrity in cardiomyocytes. eLife 1–19. (https://doi.org/10.7554/eLife.27955)

    • Search Google Scholar
    • Export Citation
  • SolanoJMJacobsonL 1999 Glucocorticoids reverse leptin effects on food intake and body fat in mice without increasing NPY mRNA. American Journal of Physiology: Endocrinology and Metabolism E708–E716. (https://doi.org/10.1016/0031-9384(73)90207-2)

    • Search Google Scholar
    • Export Citation
  • UddénJBjörntorpPArnerPBarkelingBMeurlingLRössnerS 2003 Effects of glucocorticoids on leptin levels and eating behaviour in women. Journal of Internal Medicine 225–231. (https://doi.org/10.1046/j.1365-2796.2003.01099.x)

    • Search Google Scholar
    • Export Citation
  • YuenKCJChongLERiddleMC 2013 Influence of glucocorticoids and growth hormone on insulin sensitivity in humans. Diabetic Medicine 651–663. (https://doi.org/10.1111/dme.12184)

    • Search Google Scholar
    • Export Citation
  • ZakrzewskaKECusinISainsburyARohner-JeanrenaudFJeanrenaudB 1997 Glucocorticoids as counterregulatory hormones of leptin: toward an understanding of leptin resistance. Diabetes 717–719. (https://doi.org/10.2337/diab.46.4.717)

    • Search Google Scholar
    • Export Citation
  • ZivLMutoASchoonheimPJMeijsingSHStrasserDIngrahamHSchaafMJYamamotoKRBaierH 2013 An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Molecular Psychiatry 681–691. (https://doi.org/10.1038/mp.2012.64)

    • Search Google Scholar
    • Export Citation