Hepatic inflammation precedes steatosis and is mediated by visceral fat accumulation

in Journal of Endocrinology
View More View Less
  • 1 Biosciences Department, Institute of Health and Society, Federal University of São Paulo, Santos, São Paulo, Brazil

Correspondence should be addressed to D Estadella: estadella.debora@gmail.com
Restricted access

The negative aspects of unhealthy eating on obesity and hepatic health are well described. The axis between the adipose tissue and the liver participates in most of the damage caused to this tissue regarding obesogenic diets (OD). At the same time that the effects of consuming simple carbohydrates and saturated fatty acids are known, the effects of the cessation of its intake are scarce. Withdrawing from OD is thought to improve health; despite some studies had shown improvement in hepatic conditions in the long-term, short-term studies were not found. Therefore, we aimed to determine how OD intake and withdrawal would influence visceral and hepatic fat accumulation and inflammation. To this end, male 60-days-old Wistar rats received standard chow (n = 16) or a high-sugar/high-fat diet (HSHF) for 30 days (n = 32), a cohort of the HSHF-fed animals was then kept 48 h on standard chow (n = 16). In opposition to the generally reported, the results indicate that hepatic inflammation preceded hepatic steatosis. Additionally, inflammatory markers on the liver positively correlated visceral adipokines and visceral fat accumulation mediated them in a deposit-dependent manner. At the same time, a 48-h withdrawal was capable of reverting most of the risen inflammatory mediators, although MyD88 and TNFα persisted and serum non-HDL cholesterol was higher than control levels.

 

      Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 818 819 59
Full Text Views 67 67 1
PDF Downloads 34 34 1
  • Aguiar O, Gollücke AP, de Moraes BB, Pasquini G, Catharino RR, Riccio MF, Ihara SS & Ribeiro DA 2011 Grape juice concentrate prevents oxidative DNA damage in peripheral blood cells of rats subjected to a high-cholesterol diet. British Journal of Nutrition 105 694702. (https://doi.org/10.1017/S0007114510004368)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asrih M & Jornayvaz FR 2013 Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. Journal of Endocrinology 218 R25R36. (https://doi.org/10.1530/JOE-13-0201)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barchetta I, Cimini FA, Ciccarelli G, Baroni MG & Cavallo MG 2019 Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. Journal of Endocrinological Investigation 42 12571272. (https://doi.org/10.1007/s40618-019-01052-3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berk PD & Verna EC 2016 Nonalcoholic fatty liver disease. Lipids and insulin resistance. Clinics in Liver Disease 20 245262. (https://doi.org/10.1016/j.cld.2015.10.007)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bortolin RC, Vargas AR, Gasparotto J, Chaves PR, Schnorr CE, Martinello KB, Silveira AK, Rabelo TK, Gelain DP & Moreira JCF 2018 A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. International Journal of Obesity 42 525534. (https://doi.org/10.1038/ijo.2017.225)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunner FJ, Waldeyer C, Ojeda F, Salomaa V, Kee F, Sans S, Thorand B, Giampaoli S, Brambilla P, Tunstall-Pedoe H, 2019 Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium. Lancet 394 21732183. (https://doi.org/10.1016/S0140-6736(19)32519-X)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Casagrande BP, Gomes MFP, Moura EOC, Santos ACC, Kubota MC, Ribeiro DA, Pisani LP, Medeiros A & Estadella D 2019 Age-dependent hepatic alterations induced by a high-fat high-fructose diet. Inflammation Research 68 359368. (https://doi.org/10.1007/s00011-019-01223-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiba T, Noji K, Shinozaki S, Suzuki S, Umegaki K & Shimokado K 2016 Diet-induced non-alcoholic fatty liver disease affects expression of major cytochrome P450 genes in a mouse model. Journal of Pharmacy and Pharmacology 68 15671576. (https://doi.org/10.1111/jphp.12646)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cornide-Petronio ME, Jiménez-Castro MB, Gracia-Sancho J & Peralta C 2019 New insights into the liver–visceral adipose axis during hepatic resection and liver transplantation. Cells 8 1100. (https://doi.org/10.3390/cells8091100)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Das N, Mandala A, Bhattacharjee S, Mukherjee D, Bandyopadhyay D & Roy SS 2017 Dietary fat proportionately enhances oxidative stress and glucose intolerance followed by impaired expression of the genes associated with mitochondrial biogenesis. Food and Function 8 15771586. (https://doi.org/10.1039/C6FO01326K)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vos AF, van Haren MA, Verhagen C, Hoekzema R & Kijlstra A 1994 Kinetics of intraocular tumor necrosis factor and interleukin-6 in endotoxin-induced uveitis in the rat. Investigative Ophthalmology and Visual Science 35 11001106.

    • Search Google Scholar
    • Export Citation
  • Feghali CA & Wright TM 1997 Cytokines in acute and chronic inflammation. Frontiers in Bioscience 2 d12d26. (https://doi.org/10.2741/a171)

  • Folch J, Lees M & Sloane Stanley GH 1957 A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226 497509.

    • Search Google Scholar
    • Export Citation
  • Franchitto A, Carpino G, Alisi A, De Peppo F, Overi D, De Stefanis C, Romito I, De Vito R, Caccamo R, Sonia B, 2019 The contribution of the adipose tissue-liver axis in pediatric patients with nonalcoholic fatty liver disease after laparoscopic sleeve gastrectomy. Journal of Pediatrics 216 117.e2127.e2. (https://doi.org/10.1016/j.jpeds.2019.07.037)

    • Search Google Scholar
    • Export Citation
  • Guerville M, Leroy A, Sinquin A, Laugerette F, Michalski MC & Boudry G 2017 Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. American Journal of Physiology: Endocrinology and Metabolism 313 E107E120. (https://doi.org/10.1152/ajpendo.00372.2016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hazarika A, Kalita H, Chandra Boruah D, Chandra Kalita M & Devi R 2016 Pathophysiology of metabolic syndrome: the onset of natural recovery on withdrawal of a high-carbohydrate, high-fat diet. Nutrition 32 10811091. (https://doi.org/10.1016/j.nut.2016.03.005)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishtiaq SM, Rashid H, Hussain Z, Arshad MI & Khan JA 2019 Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease. Reviews in Endocrine and Metabolic Disorders 20 253261. (https://doi.org/10.1007/s11154-019-09510-2)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffery RW, Wing RR & French SA 1992 Weight cycling and cardiovascular risk factors in obese men and women. American Journal of Clinical Nutrition 55 641644. (https://doi.org/10.1093/ajcn/55.3.641)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, Hu FB, Hubbard VS, Jakicic JM, Kushner RF, 2014 Reprint: 2013 AHA/ACC/TOS Guideline for the management of overweight and obesity in adults. Journal of the American Pharmacists Association 2013 54. (https://doi.org/10.1331/JAPhA.2014.14502)

    • Search Google Scholar
    • Export Citation
  • Jin Y & Fu J 2019 Novel insights Into the NLRP3 inflammasome in atherosclerosis. Journal of the American Heart Association 8 e012219. (https://doi.org/10.1161/JAHA.119.012219)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kabat AM & Pearce EJ 2017 Inflammation by way of macrophage metabolism. Science 356 488489. (https://doi.org/10.1126/science.aan2691)

  • Kanwar P & Kowdley KV 2016 The metabolic syndrome and its influence on nonalcoholic steatohepatitis. Clinics in Liver Disease 20 225243. (https://doi.org/10.1016/j.cld.2015.10.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kershaw EE & Flier JS 2004 Adipose tissue as an endocrine organ. Journal of Clinical Endocrinology and Metabolism 89 25482556. (https://doi.org/10.1210/jc.2004-0395)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kihira Y, Miyake M, Hirata M, Hoshina Y, Kato K, Shirakawa H, Sakaue H, Yamano N, Izawa-Ishizawa Y, Ishizawa K, 2014 Deletion of hypoxia-inducible factor-1α in adipocytes enhances glucagon-like peptide-1 secretion and reduces adipose tissue inflammation. PLoS ONE 9 e93856. (https://doi.org/10.1371/journal.pone.0093856)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kilkenny C, Browne WJ, Cuthill IC, Emerson M & Altman DG 2010 Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biology 8 e1000412. (https://doi.org/10.1371/journal.pbio.1000412)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Konrad D & Wueest S 2014 The gut-adipose-liver axis in the metabolic syndrome. Physiology 29 304313. (https://doi.org/10.1152/physiol.00014.2014)

  • Konstantynowicz-Nowicka K, Berk K, Chabowski A, Kasacka I, Bielawiec P, Łukaszuk B & Harasim-Symbor E 2019 High-fat feeding in time-dependent manner affects metabolic routes leading to nervonic acid synthesis in NAFLD. International Journal of Molecular Sciences 20 3829. (https://doi.org/10.3390/ijms20153829)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin Q & Yun Z 2015 The hypoxia-inducible factor pathway in adipocytes: the role of HIF-2 in adipose inflammation and hypertrophic cardiomyopathy. Frontiers in Endocrinology 6 39. (https://doi.org/10.3389/fendo.2015.00039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu L, Wang S, Yao L, Li JX, Ma P, Jiang LR, Ke DZ, Pan YQ & Wang JW 2016a Long-term fructose consumption prolongs hepatic stearoyl-CoA desaturase 1 activity independent of upstream regulation in rats. Biochemical and Biophysical Research Communications 479 643648. (https://doi.org/10.1016/j.bbrc.2016.09.160)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu J, Han L, Zhu L & Yu Y 2016b Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats. Lipids in Health and Disease 15 27. (https://doi.org/10.1186/s12944-016-0194-7)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu T, Zhang L, Joo D & Sun SC 2017 NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy 2 17023. (https://doi.org/10.1038/sigtrans.2017.23)

  • Lozano I, Van der Werf R, Bietiger W, Seyfritz E, Peronet C, Pinget M, Jeandidier N, Maillard E, Marchioni E, Sigrist S, 2016 High-fructose and high-fat diet-induced disorders in rats: impact on diabetes risk, hepatic and vascular complications. Nutrition and Metabolism 13 15. (https://doi.org/10.1186/s12986-016-0074-1)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu YC, Yeh WC & Ohashi PS 2008 LPS/TLR4 signal transduction pathway. Cytokine 42 145151. (https://doi.org/10.1016/j.cyto.2008.01.006)

  • Martire SI, Maniam J, South T, Holmes N, Westbrook RF & Morris MJ 2014 Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behavioural Brain Research 265 132141. (https://doi.org/10.1016/j.bbr.2014.02.027)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Montoya AK & Hayes AF 2017 Two-condition within-participant statistical mediation analysis: a path-analytic framework. Psychological Methods 22 627. (https://doi.org/10.1037/met0000086)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morris MJ, Beilharz JE, Maniam J, Reichelt AC & Westbrook RF 2015 Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neuroscience and Biobehavioral Reviews 58 3645. (https://doi.org/10.1016/j.neubiorev.2014.12.002)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mulders RJ, de Git KCG, Schéle E, Dickson SL, Sanz Y & Adan RAH 2018 Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews 19 435451. (https://doi.org/10.1111/obr.12661)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musso G, Gambino R, Durazzo M, Biroli G, Carello M, Fagà E, Pacini G, De Michieli F, Rabbione L, Premoli A, 2005 Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. Hepatology 42 11751183. (https://doi.org/10.1002/hep.20896)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rinnankoski-Tuikka R, Hulmi JJ, Torvinen S, Silvennoinen M, Lehti M, Kivelä R, Reunanen H, Kujala UM & Kainulainen H 2014 Lipid droplet-associated proteins in high-fat fed mice with the effects of voluntary running and diet change. Metabolism: Clinical and Experimental 63 10311040. (https://doi.org/10.1016/j.metabol.2014.05.010)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rocha DM, Caldas AP, Oliveira LL, Bressan J & Hermsdorff HH 2016 Saturated fatty acids trigger TLR4-mediated in flammatory response. Atherosclerosis 244 211215. (https://doi.org/10.1016/j.atherosclerosis.2015.11.015)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santamarina AB, Jamar G, Mennitti LV, de Rosso VV, Cesar HC, Oyama LM & Pisani LP 2018 The use of Juçara (Euterpe edulis mart.) supplementation for suppression of NF-κB pathway in the hypothalamus after high-fat diet in Wistar rats. Molecules 23 1814. (https://doi.org/10.3390/molecules23071814)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santamarina AB, Jamar G, Mennitti LV, Ribeiro DA, Cardoso CM, De Rosso VV, Oyama LM & Pisani LP 2019 Polyphenols-rich fruit (Euterpe edulis mart.) prevents peripheral inflammatory pathway activation by the short-term high-fat diet. Molecules 24 114. (https://doi.org/10.3390/molecules24091655)

    • Search Google Scholar
    • Export Citation
  • Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, Siow YL & O K 2017 Short term high fat diet induces obesity-enhancing changes in mouse gut microbiota that are partially reversed by cessation of the high fat diet. Lipids 52 499511. (https://doi.org/10.1007/s11745-017-4253-2)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharma RJ, Macallan DC, Sedgwick P, Remick DG & Griffin GE 1992 Kinetics of endotoxin-induced acute-phase protein gene expression and its modulation by TNF-alpha monoclonal antibody. American Journal of Physiology 262 R786R793. (https://doi.org/10.1152/ajpregu.1992.262.5.R786)

    • Search Google Scholar
    • Export Citation
  • Smith B & George J 2009 Adipocyte-hepatocyte crosstalk and the pathogenesis of nonalcoholic fatty liver disease. Hepatology 49 17651767. (https://doi.org/10.1002/hep.22937)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Totsch SK, Quinn TL, Strath LJ, McMeekin LJ, Cowell RM, Gower BA & Sorge RE 2017 The impact of the Standard American Diet in rats: effects on behavior, physiology and recovery from inflammatory injury. Scandinavian Journal of Pain 17 316324. (https://doi.org/10.1016/j.sjpain.2017.08.009)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ullman JB & Bentler PM 2017 Structural equation modeling. In Handbook of Psychology, 2nd ed., pp. 557580. Ed Weiner IB. Hoboken, NJ, USA: John Wiley & Sons. (https://doi.org/10.1007/978-1-4939-7274-6_28)

    • Search Google Scholar
    • Export Citation
  • Unamuno X, Gómez-Ambrosi J, Ramírez B, Rodríguez A, Becerril S, Valentí V, Moncada R, Silva C, Salvador J, Frühbeck G, 2019 NLRP3 inflammasome blockade reduces adipose tissue inflammation and extracellular matrix remodeling. Cellular and Molecular Immunology [epub]. (https://doi.org/10.1038/s41423-019-0296-z)

    • Search Google Scholar
    • Export Citation
  • van de Wouw M, Schellekens H, Dinan TG & Cryan JF 2017 Microbiota-gut-brain axis: modulator of host metabolism and appetite. Journal of Nutrition 147 727745. (https://doi.org/10.3945/jn.116.240481)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Herck MA, Vonghia L & Francque SM 2017 Animal models of nonalcoholic fatty liver disease – a starter’s guide. Nutrients 9 1072. (https://doi.org/10.3390/nu9101072)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wagnerberger S, Spruss A, Kanuri G, Volynets V, Stahl C, Bischoff SC & Bergheim I 2012 Toll-like receptors 1–9 are elevated in livers with fructose-induced hepatic steatosis. British Journal of Nutrition 107 17271738. (https://doi.org/10.1017/S0007114511004983)

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao S & Zhao L 2014 Gut microbiota-based translational biomarkers to prevent metabolic syndrome via nutritional modulation. FEMS Microbiology Ecology 87 303314. (https://doi.org/10.1111/1574-6941.12250)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zafar U, Khaliq S, Ahmad HU, Manzoor S & Lone KP 2018 Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links. Hormones 17 299313. (https://doi.org/10.1007/s42000-018-0051-3)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zamarron BF, Mergian TA, Cho KW, Martinez-Santibanez G, Luan D, Singer K, DelProposto JL, Geletka LM, Muir LA & Lumeng CN 2017 Macrophage proliferation sustains adipose tissue inflammation in formerly obese mice. Diabetes 66 392406. (https://doi.org/10.2337/db16-0500)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zeigler ZS, Birchfield N, Moreno K, James D & Swan P 2018 Fatness and fluctuating body weight: effect on central vasculature. BioResearch Open Access 7 90100. (https://doi.org/10.1089/biores.2017.0044)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L & Friedman JM 1994 Positional cloning of the mouse obese gene and its human homologue. Nature 372 425432. (https://doi.org/10.1038/372425a0)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang J, Zhao Y, Xu C, Hong Y, Lu H, Wu J & Chen Y 2014 Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Scientific Reports 4 5832. (https://doi.org/10.1038/srep05832)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zou H, Yin P, Liu L, Liu W, Zhang Z, Yang Y, Li W, Zong Q & Yu X 2019 Body-weight fluctuation was associated with increased risk for cardiovascular disease, all-cause and cardiovascular mortality: a systematic review and meta-analysis. Frontiers in Endocrinology 10 728. (https://doi.org/10.3389/fendo.2019.00728)

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation