Circulating cathepsin S improves glycaemic control in mice

in Journal of Endocrinology
View More View Less
  • 1 Department of Physiology, University of Melbourne, Melbourne, Australia
  • | 2 Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, and Department of Physiology, Monash University, Clayton, Victoria, Australia
  • | 3 Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
  • | 4 Departments of Surgery and Gastroenterology, Flinders Medical Centre, Bedford Park, SA, Australia

Correspondence should be addressed to M J Watt: matt.watt@unimelb.edu.au

*(MK Montgomery and MJ Watt contributed equally as senior authors)

Restricted access

Cathepsin S (CTSS) is a cysteine protease that regulates many physiological processes and is increased in obesity and type 2 diabetes. While previous studies show that deletion of CTSS improves glycaemic control through suppression of hepatic glucose output, little is known about the role of circulating CTSS in regulating glucose and energy metabolism. We assessed the effects of recombinant CTSS on metabolism in cultured hepatocytes, myotubes and adipocytes, and in mice following acute CTSS administration. CTSS improved glucose tolerance in lean mice and this coincided with increased plasma insulin. CTSS reduced G6pc and Pck1 mRNA expression and glucose output from hepatocytes but did not affect glucose metabolism in myotubes or adipocytes. CTSS did not affect insulin secretion from pancreatic β-cells, rather CTSS stimulated glucagon-like peptide (GLP)-1 secretion from intestinal mucosal tissues. CTSS retained its positive effects on glycaemic control in mice injected with the GLP1 receptor antagonist Exendin (9–39) amide. The effects of CTSS on glycaemic control were not retained in high-fat-fed mice or db/db mice, despite the preservation of CTSS’ inhibitory actions on hepatic glucose output in isolated primary hepatocytes. In conclusion, we unveil a role for CTSS in the regulation of glycaemic control via direct effects on hepatocytes, and that these effects on glycaemic control are abrogated in insulin resistant states.

 

Society for Endocrinology

Sept 2018 onwards Past Year Past 30 Days
Abstract Views 597 597 78
Full Text Views 52 52 1
PDF Downloads 50 50 2
  • Andrade MA, Chacon P, Merelo JJ & Morán F 1993 Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Engineering 6 383390. (https://doi.org/10.1093/protein/6.4.383)

    • Search Google Scholar
    • Export Citation
  • Chambers AP, Sorrell JE, Haller A, Roelofs K, Hutch CR, Kim KS, Gutierrez-Aguilar R, Li B, Drucker DJ & D’Alessio DA et al. 2017 The role of pancreatic preproglucagon in glucose homeostasis in mice. Cell Metabolism 25 927 .e3934.e3. (https://doi.org/10.1016/j.cmet.2017.02.008)

    • Search Google Scholar
    • Export Citation
  • Chen RP, Ren A & Ye SD 2013 Correlation between serum cathepsin S and insulin resistance in type 2 diabetes. Experimental and Therapeutic Medicine 6 12371242. (https://doi.org/10.3892/etm.2013.1290)

    • Search Google Scholar
    • Export Citation
  • Chung K, Pitcher T, Grant AD, Hewitt E, Lindstrom E & Malcangio M 2019 Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour. Neurobiology of Pain 6 100032. (https://doi.org/10.1016/j.ynpai.2019.100032)

    • Search Google Scholar
    • Export Citation
  • Drucker DJ 2018 Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metabolism 27 740756. (https://doi.org/10.1016/j.cmet.2018.03.001)

    • Search Google Scholar
    • Export Citation
  • Ferraris RP, Yasharpour S, Lloyd KC, Mirzayan R & Diamond JM 1990 Luminal glucose concentrations in the gut under normal conditions. American Journal of Physiology 259 G822G8 37. (https://doi.org/10.1152/ajpgi.1990.259.5.G822)

    • Search Google Scholar
    • Export Citation
  • Gao D, Nong S, Huang X, Lu Y, Zhao H, Lin Y, Man Y, Wang S, Yang J & Li J 2010 The effects of palmitate on hepatic insulin resistance are mediated by NADPH oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. Journal of Biological Chemistry 285 29965299 73. (https://doi.org/10.1074/jbc.M110.128694)

    • Search Google Scholar
    • Export Citation
  • Hsing LC, Kirk EA, Mcmillen TS, Hsiao SH, Caldwell M, Houston B, Rudensky AY & Leboeuf RC 2010 Roles for cathepsins S, L, and B in insulitis and diabetes in the NOD mouse. Journal of Autoimmunity 34 96104. (https://doi.org/10.1016/j.jaut.2009.07.003)

    • Search Google Scholar
    • Export Citation
  • Jordans S, Jenko-Kokalj S, Kühl NM, Tedelind S, Sendt W, Brömme D, Turk D & Brix K 2009. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochemistry 10 23.

    • Search Google Scholar
    • Export Citation
  • Jung TW, Yoo HJ & Choi KM 2016 Implication of hepatokines in metabolic disorders and cardiovascular diseases. BBA Clinical 5 108113. (https://doi.org/10.1016/j.bbacli.2016.03.002)

    • Search Google Scholar
    • Export Citation
  • Kady NM, Liu X, Lydic TA, Syed MH, Navitskaya S, Wang Q, Hammer SS, O’Reilly S, Huang C & Seregin SS et al. 2018 ELOVL4-mediated production of very long-chain ceramides stabilizes tight junctions and prevents diabetes-induced retinal vascular permeability. Diabetes 67 769781. (https://doi.org/10.2337/db17-1034)

    • Search Google Scholar
    • Export Citation
  • Kuester D, Lippert H, Roessner A & Krueger S 2008 The cathepsin family and their role in colorectal cancer. Pathology, Research and Practice 204 491500. (https://doi.org/10.1016/j.prp.2008.04.010)

    • Search Google Scholar
    • Export Citation
  • Lafarge JC, Pini M, Pelloux V, Orasanu G, Hartmann G, Venteclef N, Sulpice T, Shi GP, Clément K & Guerre-Millo M 2014 Cathepsin S inhibition lowers blood glucose levels in mice. Diabetologia 57 16741683. (https://doi.org/10.1007/s00125-014-3280-2)

    • Search Google Scholar
    • Export Citation
  • Latorre R, Sternini C, De Giorgio R & Greenwood-Van Meerveld B 2016 Enteroendocrine cells: a review of their role in brain-gut communication. Neurogastroenterology and Motility 28 6206 30. (https://doi.org/10.1111/nmo.12754)

    • Search Google Scholar
    • Export Citation
  • Lee TK, Cheung VC, Lu P, Lau EY, Ma S, Tang KH, Tong M, Lo J & Ng IO 2014 Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 60 1791 91. (https://doi.org/10.1002/hep.27070)

    • Search Google Scholar
    • Export Citation
  • Liu J, Ma L, Yang J, Ren A, Sun Z, Yan G, Sun J, Fu H, Xu W & Hu C et al. 2006 Increased serum cathepsin S in patients with atherosclerosis and diabetes. Atherosclerosis 186 411419. (https://doi.org/10.1016/j.atherosclerosis.2005.08.001)

    • Search Google Scholar
    • Export Citation
  • Maimaitiyiming H, Norman H, Zhou Q & Wang S 2015 CD47 deficiency protects mice from diet-induced obesity and improves whole body glucose tolerance and insulin sensitivity. Scientific Reports 5 8846. (https://doi.org/10.1038/srep08846)

    • Search Google Scholar
    • Export Citation
  • Meex RCR & Watt MJ 2017 Hepatokines: linking nonalcoholic fatty liver disease and insulin resistance. Nature Reviews: Endocrinology 13 509–520. (https://doi.org/10.1038/nrendo.2017.56)

    • Search Google Scholar
    • Export Citation
  • Meex RC, Hoy AJ, Morris A, Brown RD, Lo JC, Burke M, Goode RJ, Kingwell BA, Kraakman MJ & Febbraio MA et al. 2015 Fetuin B is a secreted hepatocyte factor linking steatosis to impaired glucose metabolism. Cell Metabolism 22 10781089. (https://doi.org/10.1016/j.cmet.2015.09.023)

    • Search Google Scholar
    • Export Citation
  • Mehrfeld C, Zenner S, Kornek M & Lukacs-Kornek V 2018 The contribution of non-professional antigen-presenting cells to immunity and tolerance in the liver. Frontiers in Immunology 9 635. (https://doi.org/10.3389/fimmu.2018.00635)

    • Search Google Scholar
    • Export Citation
  • Mohktar RA, Montgomery MK, Murphy RM & Watt MJ 2016 Perilipin 5 is dispensable for normal substrate metabolism and in the adaptation of skeletal muscle to exercise training. American Journal of Physiology: Endocrinology and Metabolism 311 E128E137. (https://doi.org/10.1152/ajpendo.00084.2016)

    • Search Google Scholar
    • Export Citation
  • Montgomery MK, Osborne B, Brown SH, Small L, Mitchell TW, Cooney GJ & Turner N 2013 Contrasting metabolic effects of medium-versus long-chain fatty acids in skeletal muscle. Journal of Lipid Research 54 33223333. (https://doi.org/10.1194/jlr.M040451)

    • Search Google Scholar
    • Export Citation
  • Montgomery MK, Fiveash CE, Braude JP, Osborne B, Brown SHJ, Mitchell TW & Turner N 2015 Disparate metabolic response to fructose feeding between different mouse strains. Scientific Reports 5 18474. (https://doi.org/10.1038/srep18474)

    • Search Google Scholar
    • Export Citation
  • Naour N, Rouault C, Fellahi S, Lavoie ME, Poitou C, Keophiphath M, Eberlé D, Shoelson S, Rizkalla S & Bastard JP et al. 2010 Cathepsins in human obesity: changes in energy balance predominantly affect cathepsin S in adipose tissue and in circulation. Journal of Clinical Endocrinology and Metabolism 95 1861186 8. (https://doi.org/10.1210/jc.2009-1894)

    • Search Google Scholar
    • Export Citation
  • Nauck MA & Meier JJ 2018 Incretin hormones: their role in health and disease. Diabetes, Obesity and Metabolism 20 (Supplement 1) 521. (https://doi.org/10.1111/dom.13129)

    • Search Google Scholar
    • Export Citation
  • Nørgaard SA, Briand F, Sand FW, Galsgaard ED, Søndergaard H, Sørensen DB & Sulpice T 2019 Nephropathy in diabetic db/db mice is accelerated by high protein diet and improved by the SGLT2 inhibitor dapagliflozin. European Journal of Pharmacology 860 172537. (https://doi.org/10.1016/j.ejphar.2019.172537)

    • Search Google Scholar
    • Export Citation
  • Oh KJ, Lee DS, Kim WK, Han BS, Lee SC & Bae KH 2016 Metabolic adaptation in obesity and type II diabetes: myokines, adipokines and hepatokines. International Journal of Molecular Sciences 18 8. (https://doi.org/10.3390/ijms18010008)

    • Search Google Scholar
    • Export Citation
  • Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, Ray S, Majumdar SS & Bhattacharya S 2012 Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nature Medicine 18 1279–1285. (https://doi.org/10.1038/nm.2851)

    • Search Google Scholar
    • Export Citation
  • Rana R, Shearer AM, Fletcher EK, Nguyen N, Guha S, Cox DH, Abdelmalek M, Wang Y, Baleja JD & Covic L et al. 2019 PAR2 controls cholesterol homeostasis and lipid metabolism in nonalcoholic fatty liver disease. Molecular Metabolism 29 99113. (https://doi.org/10.1016/j.molmet.2019.08.019)

    • Search Google Scholar
    • Export Citation
  • Rawlings ND & Salvesen G 2012 Handbook of Proteolytic Enzymes (Electronic Resource). Academic Press.

  • Rogers NM, Sharifi-Sanjani M, Csányi G, Pagano PJ & Isenberg JS 2014 Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biology 37 92101. (https://doi.org/10.1016/j.matbio.2014.01.002)

    • Search Google Scholar
    • Export Citation
  • Schirra J, Sturm K, Leicht P, Arnold R, Göke B & Katschinski M 1998 Exendin(9–39)amide is an antagonist of glucagon-like peptide-1(7–36)amide in humans. Journal of Clinical Investigation 101 142114 30. (https://doi.org/10.1172/JCI1349)

    • Search Google Scholar
    • Export Citation
  • Sébert M, Sola-Tapias N, Mas E, Barreau F & Ferrand A 2019 Protease-activated receptors in the intestine: focus on inflammation and cancer. Frontiers in Endocrinology 10 717. (https://doi.org/10.3389/fendo.2019.00717)

    • Search Google Scholar
    • Export Citation
  • Shearer AM, Rana R, Austin K, Baleja JD, Nguyen N, Bohm A, Covic L & Kuliopulos A 2016 Targeting liver fibrosis with a cell-penetrating protease-activated receptor-2 (PAR2) pepducin. Journal of Biological Chemistry 291 2318823198. (https://doi.org/10.1074/jbc.M116.732743)

    • Search Google Scholar
    • Export Citation
  • Steinberg GR & Dyck DJ 2000 Development of leptin resistance in rat soleus muscle in response to high-fat diets. American Journal of Physiology: Endocrinology and Metabolism 279 E1374E13 82. (https://doi.org/10.1152/ajpendo.2000.279.6.E1374)

    • Search Google Scholar
    • Export Citation
  • Takiyama Y, Sera T, Nakamura M, Ishizeki K, Saijo Y, Yanagimachi T, Maeda M, Bessho R, Takiyama T & Kitsunai H et al. ,et al. et al.2018 Impacts of diabetes and an SGLT2 inhibitor on the glomerular number and volume in db/db mice, as estimated by synchrotron radiation micro-CT at SPring-8. EBiomedicine 36 329346. (https://doi.org/10.1016/j.ebiom.2018.09.048)

    • Search Google Scholar
    • Export Citation
  • Taleb S, Lacasa D, Bastard JP, Poitou C, Cancello R, Pelloux V, Viguerie N, Benis A, Zucker JD & Bouillot JL et al. 2005 Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB Journal 19 15401542. (https://doi.org/10.1096/fj.05-3673fje)

    • Search Google Scholar
    • Export Citation
  • Taleb S, Cancello R, Poitou C, Rouault C, Sellam P, Levy P, Bouillot JL, Coussieu C, Basdevant A & Guerre-Millo M et al. 2006 Weight loss reduces adipose tissue cathepsin S and its circulating levels in morbidly obese women. Journal of Clinical Endocrinology and Metabolism 91 10421047. (https://doi.org/10.1210/jc.2005-1601)

    • Search Google Scholar
    • Export Citation
  • Verrijn Stuart AA, Schipper HS, Tasdelen I, Egan DA, Prakken BJ, Kalkhoven E & De Jager W 2012 Altered plasma adipokine levels and in vitro adipocyte differentiation in pediatric type 1 diabetes. Journal of Clinical Endocrinology and Metabolism 97 463472. (https://doi.org/10.1210/jc.2011-1858)

    • Search Google Scholar
    • Export Citation
  • Vidak E, Javoršek U, Vizovišek M & Turk B 2019 Cysteine cathepsins and their extracellular roles: shaping the microenvironment. Cells 8 264. (https://doi.org/10.3390/cells8030264)

    • Search Google Scholar
    • Export Citation
  • Wang J, Chakrabarty S, Bui Q, Ruf W & Samad F 2015 Hematopoietic tissue factor-protease-activated receptor 2 signaling promotes hepatic inflammation and contributes to pathways of gluconeogenesis and steatosis in obese mice. American Journal of Pathology 185 524535. (https://doi.org/10.1016/j.ajpath.2014.10.008)

    • Search Google Scholar
    • Export Citation
  • Watt MJ, Miotto PM, De Nardo W & Montgomery MK 2019 The liver as an endocrine organ – linking NAFLD and insulin resistance. Endocrine Reviews 40 13671393. (https://doi.org/10.1210/er.2019-00034)

    • Search Google Scholar
    • Export Citation
  • Whitmore L & Wallace BA 2004 DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research 32 W668W673. (https://doi.org/10.1093/nar/gkh371)

    • Search Google Scholar
    • Export Citation
  • Wilkinson RD, Williams R, Scott CJ & Burden RE 2015 Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biological Chemistry 396 8678 8 2. (https://doi.org/10.1515/hsz-2015-0114)

    • Search Google Scholar
    • Export Citation
  • Windeløv JA, Wewer Albrechtsen NJ, Kuhre RE, Jepsen SL, Hornburg D, Pedersen J, Jensen EP, Galsgaard KD, Winther-Sørensen M & Ørgaard A et al. 2017 Why is it so difficult to measure glucagon-like peptide-1 in a mouse? Diabetologia 60 20662075. (https://doi.org/10.1007/s00125-017-4347-7)

    • Search Google Scholar
    • Export Citation
  • Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, Zhao XY, Ji Y, Li C & Guo L et al. 2019 Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Molecular Cell 75 644 .e5660.e5. (https://doi.org/10.1016/j.molcel.2019.07.028)

    • Search Google Scholar
    • Export Citation
  • Xu L, Feng B, Wang H & Li X 2013 Multiple statistical methods for assessing differential gene expression in microarray data of diabetic model rats to predict the molecular mechanism of atorvastatin on anti-atherogenesis. Experimental and Clinical Endocrinology and Diabetes 121 272279. (https://doi.org/10.1055/s-0033-1334955)

    • Search Google Scholar
    • Export Citation
  • Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, Du L, Mao S, Yin X & Lu Q 2019 Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytotherapy Research 33 31403152. (https://doi.org/10.1002/ptr.6486)

    • Search Google Scholar
    • Export Citation