Glucagon is the principal glucose-elevating hormone that forms the first-line defence against hypoglycaemia. Along with insulin, glucagon also plays a key role in maintaining systemic glucose homeostasis. The cells that secrete glucagon, pancreatic α-cells, are electrically excitable cells and use electrical activity to couple its hormone secretion to changes in ambient glucose levels. Exactly how glucose regulates α-cells has been a topic of debate for decades but it is clear that electrical signals generated by the cells play an important role in glucagon secretory response. Decades of studies have already revealed the key players involved in the generation of these electrical signals and possible mechanisms controlling them to tune glucagon release. This has offered the opportunity to fully understand the enigmatic α-cell physiology. In this review, we describe the current knowledge on cellular electrophysiology and factors regulating excitability, glucose sensing, and glucagon secretion. We also discuss α-cell pathophysiology and the perspective of addressing glucagon secretory defects in diabetes for developing better diabetes treatment, which bears the hope of eliminating hypoglycaemia as a clinical problem in diabetes care.
Journal of Endocrinology is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 250 | 250 | 250 |
PDF Downloads | 272 | 272 | 272 |